Half life is the time that it takes for half of the original value of some amount of a radioactive element to decay.
We have the following equation representing the half-life decay:

A is the resulting amount after t time
Ao is the initial amount = 50 mg
t= Elapsed time
t half is the half-life of the substance = 14.3 days
We replace the know values into the equation to have an exponential decay function for a 50mg sample

That would be the answer for a)
To know the P-32 remaining after 84 days we have to replace this value in the equation:

So, after 84 days the P-32 remaining will be 0.85 mg
Answer:
B- Sodium loses an electron.
D- Fluorine gains an electron.
Sodium is oxidized.
Explanation:
The reaction equation is given as:
Na + F → NaF
In this reaction, Na is the reducing agent. It loses an electron and then becomes oxidized. By so doing, Na becomes isoelectronic with Neon.
Fluorine gains the electron and then becomes reduced. This makes fluorine also isoelectronic with Neon.
This separation of charges on the two species leads to an electrostatic attraction which forms the ionic bonds.
Answer:
Option D. 230 J
Explanation:
We'll begin by calculating the temperature change of the iron. This can be obtained as follow:
Initial temperature (T₁) = 50 °C
Final temperature (T₂) = 75 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 75 – 50
ΔT = 25 °C
Thus, the temperature change of the iron is 25 °C.
Finally, we shall determine the amount of heat energy used. This can be obtained as follow:
Mass (M) = 20 g
Change in temperature (ΔT) = 25 °C
Specific heat capacity (C) = 0.46 J/gºC
Heat (Q) =?
Q = MCΔT
Q = 20 × 0.46 × 25
Q = 230 J
Thus, the amount of heat used was 230 J