1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gulaghasi [49]
3 years ago
14

Refrigerant-22 absorbs heat from a cooled space at 50°F as it flows through an evaporator of a refrigeration system. R-22 enters

the evaporator at 10°F at a rate of 0.08 lbm/s with a quality of 0.3 and leaves as a saturated vapor at the same pressure. Determine:
a. The rate of cooling provided, in Btu/h.

b. The rate of exergy destruction in the evaporator.

c. The second-law efficiency of the evaporator.


Take T0 = 77°F. The properties of R-22 at the inlet and exit of the evaporator are: h1 = 107.5 Btu/lbm, s1 = 0.2851 Btu/lbm·R, h2 = 172.1 Btu/ lbm, s^2 = 0.4225 Btu/lbm·R.
Engineering
1 answer:
lesya692 [45]3 years ago
6 0

Answer:

a) the  rate of cooling provided is 18604.8 Btu/h

b) the rate of exergy destruction in the evaporator is 0.46 Btu/Ibm

c) the second-law efficiency of the evaporator is 37.39%

Explanation:

Given that;

Temperature of sink TL = 50°F = 510 R

Temperature at evaporator inlet TI = 10°F = 470 R

mass flow rate m" = 0.08 lbm/s

quality of refrigerant at evaporator inlet x1 = 0.3

quality of refrigerant at evaporator exit x2 = 1.0

T₀ = 77°F = 537 R

h1 = 107.5 Btu/lbm

s1 = 0.2851 Btu/lbm·R,

h2 = 172.1 Btu/ lbm,

s2 = 0.4225 Btu/lbm·R.

a) rate of cooling provided, in Btu/h.

QL = m"( h2 - h1)

we substitute

QL = 0.08( 172.1 - 107.5

= 0.08 × 64.6

= 5.168 Btu/s

we convert to Btu/h

5.168 × 60 × 60

QL = 18604.8 Btu/h

Therefore the  rate of cooling provided is 18604.8 Btu/h

b) The rate of exergy destruction in the evaporator

Entropy generation can be expressed as;

S_gen = m"(s2 - s1) - QL/TL

so we substitute

S_gen = 0.08( 0.4225 -  0.2851  ) - 5.168 / 510

= 0.010992 - 0.01013

S_gen = 0.00086 Btu/ibm.R

now the energy destroyed expressed as;

X_dest = T₀ × S_gen

so

X_dest =  537 × 0.00086

X_dest = 0.46 Btu/Ibm

Therefore the rate of exergy destruction in the evaporator is 0.46 Btu/Ibm

c)  The second-law efficiency of the evaporator.

Energy expended is expressed as;

X_exp = m"(h1 - h2) - m"T₀(s1 - s2)

we substitute

= 0.08( 107.5 - 172.1 ) - [0.08 × 537 ( 0.2851 - 0.4225 )

= -5.168 - [ - 5.9027)

= -5.168 + 5.9027

= 0.7347 Btu/s

Now second law efficiency is expressed as;

nH = 1 - (X_dest / X_esp)

= 1 - ( 0.46 / 0.7347 )

= 1 - 0.6261

= 0.3739

nH = 37.39%

Therefore the second-law efficiency of the evaporator is 37.39%

You might be interested in
Which technical planning document defines support tasks?
maria [59]

Answer:

Integrated Master Plan

I hope that's right UwU

4 0
3 years ago
If the 1550-lb boom AB, the 190-lb cage BCD, and the 169-lb man have centers of gravity located at points G1, G2 and G3, respect
Natasha2012 [34]

Answer:

hello the required diagram is missing attached to the answer is the required diagram

7.9954 kip.ft

Explanation:

AB = 1550-Ib ( weight acting on AB )

BCD = 190 - Ib ( weight of cage )

169-Ib = weight of man inside cage

Attached is the free hand diagram of the question

calculate distance x!

= cos 75⁰ = \frac{x^!}{10ft}

    x! = 10 * cos 75^{o} = 2.59 ft

calculate distance x

= cos 75⁰ = \frac{x}{30ft}

x = 30 * cos 75⁰ = 7.765 ft

The resultant moment  produced by all the weights about point A

∑ Ma = 0

Ma = 1550 * x! + 190 ( x + 2.5 ) + 169 ( x + 2.5 + 1.75 )

Ma = 1550 * 2.59 + 190 ( 7.765 + 2.5 ) + 169 ( 7.765 + 2.5 + 1.75 )

      = 4014.5 + 1950.35 + 2030.535

      = 7995.385 ft. Ib ≈ 7.9954 kip.ft

6 0
4 years ago
Examples of reciprocating motion in daily life
bonufazy [111]

Answer:

Examples of reciprocating motion in daily life are;

1) The needles of a sewing machine

2) Electric powered reciprocating saw blade

3) The motion of a manual tire pump

Explanation:

A reciprocating motion is a motion that consists of motion of a part in an upward and downwards (\updownarrow) or in a backward and forward (↔) direction repetitively

Examples of reciprocating motion in daily life includes the reciprocating motion of the needles of a sewing machine and the reciprocating motion of the reciprocating saw and the motion of a manual tire pump

In a sewing machine, a crank shaft in between a wheel and the needle transforms the rotary motion of the wheel into reciprocating motion of the needle.

8 0
3 years ago
A 03-series cylindrical roller bearing with inner ring rotating is required for an application in which the life requirement is
-BARSIC- [3]

Answer:

\mathbf{C_{10} = 137.611 \ kN}

Explanation:

From the information given:

Life requirement = 40 kh = 40 40 \times 10^{3} \ h

Speed (N) = 520 rev/min

Reliability goal (R_D) = 0.9

Radial load (F_D) = 2600 lbf

To find C10 value by using the formula:

C_{10}=F_D\times \pmatrix \dfrac{x_D}{x_o +(\theta-x_o) \bigg(In(\dfrac{1}{R_o}) \bigg)^{\dfrac{1}{b}}} \end {pmatrix} ^{^{^{\dfrac{1}{a}}

where;

x_D = \text{bearing life in million revolution} \\  \\ x_D = \dfrac{60 \times L_h \times N}{10^6} \\ \\ x_D = \dfrac{60 \times 40 \times 10^3 \times 520}{10^6}\\ \\ x_D = 1248 \text{ million revolutions}

\text{The cyclindrical roller bearing (a)}= \dfrac{10}{3}

The Weibull parameters include:

x_o = 0.02

(\theta - x_o) = 4.439

b= 1.483

∴

Using the above formula:

C_{10}=1.4\times 2600 \times \pmatrix \dfrac{1248}{0.02+(4.439) \bigg(In(\dfrac{1}{0.9}) \bigg)^{\dfrac{1}{1.483}}} \end {pmatrix} ^{^{^{\dfrac{1}{\dfrac{10}{3}}}

C_{10}=3640 \times \pmatrix \dfrac{1248}{0.02+(4.439) \bigg(In(\dfrac{1}{0.9}) \bigg)^{\dfrac{1}{1.483}}} \end {pmatrix} ^{^{^{\dfrac{3}{10}}

C_{10} = 3640 \times \bigg[\dfrac{1248}{0.9933481582}\bigg]^{\dfrac{3}{10}}

C_{10} = 30962.449 \ lbf

Recall that:

1 kN = 225 lbf

∴

C_{10} = \dfrac{30962.449}{225}

\mathbf{C_{10} = 137.611 \ kN}

7 0
3 years ago
Which of the following answer options are your employer's responsibility?
tino4ka555 [31]

Answer:

Develop a written hazard communication program

Implement a hazard communication program

Maintain a written hazard communication program

Explanation:

To find - Which of the following answer options are your employer's responsibility?  Select all that apply.

Develop a written hazard communication program

Implement a hazard communication program

Maintain a written hazard communication program

Solution -

The correct options are -

Develop a written hazard communication program

Implement a hazard communication program

Maintain a written hazard communication program

All are the Responsibilities of an employer

Reason -

The most important duty of the employer is to stay alert and implement a correctly and efficiently written communication program related to hazards of the substances in the workplace.

He also has to maintain the program so that employees do not get affected.

3 0
4 years ago
Other questions:
  • Which of the following should NOT be included in an emergency kit?
    13·2 answers
  • If you were choosing between two strain gauges, one which has a single resistor in a bridge that varies and one that has two res
    11·1 answer
  • 2.18 The net potential energy between two adjacent ions, EN, may be represented by the following equation: (1) Calculate the bon
    5·1 answer
  • On a given day, a barometer at the base of the Washington Monument reads 29.97 in. of mercury. What would the barometer reading
    6·1 answer
  • Often an attacker crafts e-mail attacks containing malware designed to take advantage of the curiosity or even greed of the reci
    14·1 answer
  • A low-resistance path in a circuit, commonly called a _____ can cause a circuit breaker to trip
    7·1 answer
  • Policeman says, "Son, you can't stay here"
    9·1 answer
  • What do u mean by double entry bookkeeping system?<br>u fellas don't spam pls​
    12·2 answers
  • An open top concrete tank is available to a construction crew to store water. The job site has a daily requirement for 500 gallo
    10·1 answer
  • Which option distinguishes why the behaviors of the team in the following scenario are so important during the engineering desig
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!