1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trasher [3.6K]
2 years ago
14

Examples of reciprocating motion in daily life

Engineering
1 answer:
bonufazy [111]2 years ago
8 0

Answer:

Examples of reciprocating motion in daily life are;

1) The needles of a sewing machine

2) Electric powered reciprocating saw blade

3) The motion of a manual tire pump

Explanation:

A reciprocating motion is a motion that consists of motion of a part in an upward and downwards (\updownarrow) or in a backward and forward (↔) direction repetitively

Examples of reciprocating motion in daily life includes the reciprocating motion of the needles of a sewing machine and the reciprocating motion of the reciprocating saw and the motion of a manual tire pump

In a sewing machine, a crank shaft in between a wheel and the needle transforms the rotary motion of the wheel into reciprocating motion of the needle.

You might be interested in
Discuss the impact of the changing urban center. Include the impacts on political, economic, and social roles and opportunities.
KengaRu [80]

Answer:

The 21st century world have been earmarked with great influx of people to the urban centre,the notion of gender equality and female education have also made most traditional roles in the family changing.Before now,wives we're known for their full independence on their husband who is considered the bread winner.

Inspite of the growth of of the urban centre the availability of resources have dwindled,resulting in the surge of unemployment in many urban centre,the political entity of the society which is the government have serious challenging in managing the various threat posed by overpopulation, unemployment results in the decrease of standard of living of person and family,to cater for this family have to change their roles,wives now work to support the husband.

Explanation:

6 0
3 years ago
Can someone help me plz!!! It’s 25 points
lora16 [44]
Where’s the question at ???
3 0
3 years ago
Read 2 more answers
Vector A extends from the origin to a point having polar coordinates (7, 70ᵒ ) and vector B extends from the origin to a point h
yaroslaw [1]

Answer:

13.95

Explanation:

Given :

Vector A polar coordinates = ( 7, 70° )

Vector B polar coordinates = ( 4, 130° )

To find A . B we  will

A ( r , ∅ ) = ( 7, 70 )

A = rcos∅ + rsin∅

therefore ; A  = 2.394i + 6.57j

B ( r , ∅ ) = ( 4, 130° )

B = rcos∅ + rsin∅

therefore ;  B = -2.57i + 3.06j

Hence ; A .B

( 2.394 i + 6.57j ) . ( -2.57 + 3.06j ) = 13.95

8 0
3 years ago
Consider a regenerative gas-turbine power plant with two stages of compression and two stages of expansion. The overall pressure
iris [78.8K]

Answer: the minimum mass flow rate of air required to generate a power output of 105 MW is 238.2 kg/s

Explanation:

from the T-S diagram, we get the overall pressure ratio of the cycle is 9

Calculate the pressure ratio in each stage of compression and expansion. P1/P2 = P4/P3  = √9 = 3

P5/P6 = P7/P8  = √9 =3  

get the properties of air from, "TABLE A-17 Ideal-gas properties of air", in the text book.

At temperature T1 =300K

Specific enthalpy of air h1 = 300.19 kJ/kg

Relative pressure pr1 = 1.3860  

At temperature T5 = 1200 K

Specific enthalpy h5 = 1277.79 kJ/kg

Relative pressure pr5 = 238  

Calculate the relative pressure at state 2

Pr2 = (P2/P1) Pr5

Pr2 =3 x 1.3860 = 4.158  

get the two values of relative pressure between which the relative pressure at state 2 lies and take the corresponding values of specific enthalpy from, "TABLE A-17 Ideal-gas properties of air", in the text book.  

Relative pressure pr = 4.153

The corresponding specific enthalpy h = 411.12 kJ/kg  

Relative pressure pr = 4.522

The corresponding specific enthalpy h = 421.26 kJ/kg  

Find the specific enthalpy of state 2 by the method of interpolation

(h2 - 411.12) / ( 421.26 - 411.12) =  

(4.158 - 4.153) / (4.522 - 4.153 )

h2 - 411.12 = (421.26 - 411.12) ((4.158 - 4.153) / (4.522 - 4.153))  

h2 - 411.12 = 0.137

h2 = 411.257kJ/kg  

Calculate the relative pressure at state 6.

Pr6 = (P6/P5) Pr5

Pr6 = 1/3 x 238 = 79.33  

Obtain the two values of relative pressure between which the relative pressure at state 6 lies and take the corresponding values of specific enthalpy from, "TABLE A-17 Ideal-gas properties of air", in the text book.  

Relative pressure Pr = 75.29

The corresponding specific enthalpy h = 932.93 kJ/kg  

Relative pressure pr = 82.05

The corresponding specific enthalpy h = 955.38 kJ/kg  

Find the specific enthalpy of state 6 by the method of interpolation.

(h6 - 932.93) / ( 955.38 - 932.93) =  

(79.33 - 75.29) / ( 82.05 - 75.29 )

(h6 - 932.93) = ( 955.38 - 932.93) ((79.33 - 75.29) / ( 82.05 - 75.29 )

h6 - 932.93 = 13.427

h6 = 946.357 kJ/kg

Calculate the total work input of the first and second stage compressors

(Wcomp)in = 2(h2 - h1 ) = 2( 411.257 - 300.19 )

= 222.134 kJ/kg  

Calculate the total work output of the first and second stage turbines.

(Wturb)out = 2(h5 - h6) = 2( 1277.79 - 946.357 )

= 662.866 kJ/kg  

Calculate the net work done

Wnet = (Wturb)out  - (Wcomp)in

= 662.866 - 222.134

= 440.732 kJ/kg  

Calculate the minimum mass flow rate of air required to generate a power output of 105 MW

W = m × Wnet

(105 x 10³) kW = m(440.732 kJ/kg)

m = (105 x 10³) / 440.732

m = 238.2 kg/s

therefore the minimum mass flow rate of air required to generate a power output of 105 MW is 238.2 kg/s

4 0
3 years ago
In a much smaller model of the Gizmo apparatus, a 5 kg mass drops 86 mm (0.086 m) and raises the temperature of 1 gram of water
Orlov [11]

Answer:

The amount of energy transferred to the water is 4.214 J

Explanation:

The given parameters are;

The mass of the object that drops = 5 kg

The height from which it drops = 86 mm (0.086 m)

The potential energy P.E. is given by the following formula

P.E = m·g·h

Where;

m = The mass of the object = 5 kg

g = The acceleration de to gravity = 9.8 m/s²

h = The height from which the object is dropped = 0.086 m

Therefore;

P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J

Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;

The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.

6 0
3 years ago
Other questions:
  • Twenty-five wooden beams were ordered or a construction project. The sample mean and he sample standard deviation were measured
    6·1 answer
  • A civil engineer is asked to design a curved section of roadway that meets the following conditions: With ice on the road, when
    13·1 answer
  • Define the difference between elastic and plastic deformation in terms of the effect on the crystal lattice structure.
    5·1 answer
  • Air expands through an ideal turbine from 1 MPa, 900 K to 0.1 MPa, 500K. The inlet velocity is small compared to the exit veloci
    10·1 answer
  • WILL MARK BRAINLIST I need help on this asap thanks
    15·1 answer
  • I want to solve the question
    11·1 answer
  • What is the process pf distributing and selling clean fuel?​
    6·1 answer
  • A driver complains that his front tires are wearing
    14·1 answer
  • 10 properties of metals?<br> ​
    10·2 answers
  • Why the power factor is Low in no load test in induction motor ?​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!