Answer:
critical stress required for the propagation is 27.396615 ×
N/m²
Explanation:
given data
specific surface energy = 0.90 J/m²
modulus of elasticity E = 393 GPa = 393 ×
N/m²
internal crack length = 0.6 mm
to find out
critical stress required for the propagation
solution
we will apply here critical stress formula for propagation of internal crack
( σc ) =
.....................1
here E is modulus of elasticity and γs is specific surface energy and a is half length of crack i.e 0.3 mm = 0.3 ×
m
so now put value in equation 1 we get
( σc ) =
( σc ) =
( σc ) = 27.396615 ×
N/m²
so critical stress required for the propagation is 27.396615 ×
N/m²
The weight of the specimen in SSD condition is 373.3 cc
<u>Explanation</u>:
a) Apparent specific gravity = 
Where,
A = mass of oven dried test sample in air = 1034 g
B = saturated surface test sample in air = 1048.9 g
C = apparent mass of saturated test sample in water = 975.6 g
apparent specific gravity =
= 
Apparent specific gravity = 2.88
b) Bulk specific gravity 

= 2.76
c) Bulk specific gravity (SSD):


= 2.80
d) Absorption% :


Absorption = 1.44 %
e) Bulk Volume :


= 
Answer:
hello your question is incomplete attached below is the complete question
answer: There is a hydraulic jump
Explanation:
First we have to calculate the depth of flow downstream of the gate
y1 =
----------- ( 1 )
Cc ( concentration coefficient ) = 0.61 ( assumed )
Yg ( depth of gate opening ) = 0.5
hence equation 1 becomes
y1 = 0.61 * 0.5 = 0.305 m
calculate the flow per unit width q
q = Q / b ----------- ( 2 )
Q = 10 m^3 /s
b = 2 m
hence equation 2 becomes
q = 10 / 2 = 5 m^2/s
next calculate the depth before hydraulic jump y2 by using the hydraulic equation
answer : where y1 < y2 hence a hydraulic jump occurs in the lined channel
attached below is the remaining part of the solution
Answer:
<h2>it's damage kindly be careful</h2>