Answer:c
Explanation:
I think because ca^+2
It’s loses the ion and if u look back u would see that a cation is a t charge but it’s not Goan that electron it’s losing that electron
A stable arrangement of eight valence electrons : ³⁵Cl⁻¹
<h3>Further explanation</h3>
Chlorine is a halogen gas, located in group 17, p block
Chlorine has an atomic number of 17 and an atomic mass of 35
Electron configuration: [Ne] 3s²3p⁵
If we look at the electron configuration, then Cl will bind 1 more electron so that the configuration is stable like Argon (atomic number 18)
So by binding this one electron, chlorine forms negative ions (anions)
³⁵Cl⁻¹
B. Cl⁻² binds 2 electrons, exceeding the octet rule
C. Cl⁺¹, releases 1 electron, remains unstable
D. Cl, the neutral form of Cl, is still unstable with a 7-electron valence configuration
1.) A compound is a substance that originates from two or more separate elements. It shares some similarities with a mixture.
2.) A compound has quite different properties from which it was formed. It also cannot be separated easily. Compounds are formed by chemical reactions.
3.) A pure substance has a constant composition and has consistent properties. It can be a compound or an element, but its composition is constant.
Hope this helps. :)
Answer:
6.53g of K₂SO₄
Explanation:
Formula of the compound is K₂SO₄
Given parameters:
Volume of K₂SO₄ = 250mL = 250 x 10⁻³L
= 0.25L
Concentration of K₂SO₄ = 0.15M or 0. 15mol/L
Unknown:
Mass of K₂SO₄ =?
Methods:
We use the mole concept to solve this kind of problem.
>>First, we find the number of moles using the expression below:
Number of moles= concentration x volume
Solving for number of moles:
Number of moles = 0.25 x 01.5
= 0.0375mole
>>Secondly, we use the number of moles to find the mass of K₂SO₄ needed. This can be obtained using the expression below:
Mass(g) = number of moles x molar mass
Solving:
To find the molar mass of K₂SO₄, we must know the atomic mass of each element in the compound. This can be obtained using the periodic table.
For:
K = 39g
S = 32g
O = 16g
Molar mass of K₂SO₄ = (39x2) + 32 + (16x4)
= 78 +32 + 64
= 174g/mol
Using the expression:
Mass(g) = number of moles x molar mass
Mass of K₂SO₄ = 0.0375 x 174 = 6.53g