Endothermic reactions are reactions that require heat in the course of the process. The heat of reaction in this case is positive which means the energy of the products is greater than the energy of the reactants. In this case, the answer to this problem would have to be <span>1. must be greater than the required ΔH </span>
Answer:
in a chemical equation if the bond is ionic its the first part that is positive and the second half of the equation is negative
Explanation:
Ions have a negative or positive charge because silver is metal. It is a cation (Ion with a positive charge).
Heat gained by ice cubes would be equal to the - heat lost by warm water
The moles of ice is: 50.5 g / 18.0 g/mol = 2.81 mol
Heat required to melt all of the ice is equal to: 2.81 mol X 6.02 kJ/mol = 16.9 kJ = 16890 J
Now, know whether the warm water will still be above 0C when it loses this much heat:
-1690 J = 160 g (4.184 J/gC) (Delta T) Delta T = -25C
In order to solve for the final temperature, going back to include warming of the melted ice to a final temperature:
q(ice/water) = - q(warm water)
moles (Delta Hf) + m c (T2-T1) = - m c (T2-T1)
50.5 g / 18.0 g/mol = 2.81 mol
2.81 mol X 6.02 kJ/mol + 50.5g (4.184 J/gC) (T2-0) = -160g (4.184 J/gC) ( T2-80)
16916 + 211.3T2 = -669.4 T2 + 53555
36639 = 880.7 T2
T2 = 41.6 C