Answer:In primary succession, newly exposed or newly formed rock is colonized by living things for the first time. In secondary succession, an area previously occupied by living things is disturbed—disrupted—then recolonized following the disturbance.The first organisms to appear in areas of primary succession are often mosses or lichens. These organisms are known as pioneer species because they are the first species present; pioneer species must be hardy and strong, just like human pioneers.A heterotroph is an organism that eats other plants or animals for energy and nutrients. The term stems from the Greek words hetero for “other” and trophe for “nourishment.” Organisms are characterized into two broad categories based upon how they obtain their energy and nutrients: autotrophs and heterotrophs.
Explanation:I forgot Extinct
Answer:
ω = 12.023 rad/s
α = 222.61 rad/s²
Explanation:
We are given;
ω0 = 2.37 rad/s, t = 0 sec
ω =?, t = 0.22 sec
α =?
θ = 57°
From formulas,
Tangential acceleration; a_t = rα
Normal acceleration; a_n = rω²
tan θ = a_t/a_n
Thus; tan θ = rα/rω² = α/ω²
tan θ = α/ω²
α = ω²tan θ
Now, α = dω/dt
So; dω/dt = ω²tan θ
Rearranging, we have;
dω/ω² = dt × tan θ
Integrating both sides, we have;
(ω, ω0)∫dω/ω² = (t, 0)∫dt × tan θ
This gives;
-1[(1/ω_o) - (1/ω)] = t(tan θ)
Thus;
ω = ω_o/(1 - (ω_o × t × tan θ))
While;
α = dω/dt = ((ω_o)²×tan θ)/(1 - (ω_o × t × tan θ))²
Thus, plugging in the relevant values;
ω = 2.37/(1 - (2.37 × 0.22 × tan 57))
ω = 12.023 rad/s
Also;
α = (2.37² × tan 57)/(1 - (2.37 × 0.22 × tan 57))²
α = 8.64926751525/0.03885408979 = 222.61 rad/s²
Answer:
2.47 m
Explanation:
Let's calculate first the time it takes for the ball to cover the horizontal distance that separates the starting point from the crossbar of d = 52 m.
The horizontal velocity of the ball is constant:

and the time taken to cover the horizontal distance d is

So this is the time the ball takes to reach the horizontal position of the crossbar.
The vertical position of the ball at time t is given by

where
is the initial vertical velocity
g = 9.8 m/s^2 is the acceleration of gravity
And substituting t = 2.56 s, we find the vertical position of the ball when it is above the crossbar:

The height of the crossbar is h = 3.05 m, so the ball passes

above the crossbar.
Answer:
About 66 miles per hour
Explanation:
Based on the information given we can assume the car traveled the same number of miles every hour meaning all we need to do is divide.
400/6 ≈ 66 miles per hour
Answer:hiuwiauwney jejjksuu
Explanation: