Answer:

Explanation:
To calculate the force we need to use this equation

where L is the total length of the wire
So in this case the small element of current is

Because x is the direction of the current flow.
As is said in the problem B is such that
![\vec{B} = B \hat{j} = 0.62\hat{j} [ T]](https://tex.z-dn.net/?f=%20%5Cvec%7BB%7D%20%3D%20B%20%5Chat%7Bj%7D%20%3D%200.62%5Chat%7Bj%7D%20%5B%20T%5D)
so to use the equation above we first calculate the following cross product:

so the force:
So here we use the fact that B=0 in any point of the x axis that is not
, that means that we only need to do the integration between a very short distant behind the point
and a very short distant after that point, meaning:

so is the same as evaluating
at 
that is:




I believe the answer is C: For objects at extremely fast speeds.
Hope this helps!
Answer:
2440 N
Explanation:
As,F=m*a.....
From the question we have
force = 976 × 2.5
We have the final answer as
2440 N
you can increase kinetic thermal energy of the water by boiling it.