The fact that some of the solid was transferred would decrease the mass of the limiting reactant.
<h3>What is the limiting reactant?</h3>
We know that in a chemical reaction, there are at least two substances that are combined in order to give the product of the reaction. We also know that the product that we obtain must be in accordance to the stoichiometry of the reaction.
It is common to see that one of the reactants would be present in a very large amount while the other reactant would be present only in quite a small amount. The reactant that is present in a small amount is said to be the limiting reactant while the one that is present in the large amount is said to be the reactant that is in excess.
Having said this, we know that the mass of the limiting reactant can be obtained from the mass of the solid that is obtained after the reaction.
If we do not take out all of the solid from the centrifuge, the mass would not be accurately weighed and the mass of the limiting reactant would not be accurately determined.
Learn more about mass of the product:brainly.com/question/19694949
#SPJ1
Answer:
0.39 mol
Explanation:
Considering the ideal gas equation as:
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
At same volume, for two situations, the above equation can be written as:-
Given ,
n₁ = 1.50 mol
n₂ = ?
P₁ = 3.75 atm
P₂ = 0.998 atm
T₁ = 21.7 ºC
T₂ = 28.1 ºC
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (21.7 + 273.15) K = 294.85 K
T₂ = (28.1 + 273.15) K = 301.25 K
Using above equation as:

Solving for n₂ , we get:
n₂ = 0.39 mol
2 resonance structure.
O=S⁺-O⁻ and O⁻-S⁺=O, angles between S and O are 120°, bond order is 1,5.
A .
1 mol of sodium na atoms -22.99
22.99 x 8 =183.92
Closest answer
Answer:
there must be free-moving electrons in a compound to conduct electricity.
in solid ionic compounds, there are no free electrons so it can't conduct electricity.
But in aqueous form the forces of attraction are broken and the ions (cations and anions) are free to move. This means there are free electrons that allow the aqueous compound to conduct electricity.