<span>The 2nd truck was overloaded with a load of 16833 kg instead of the permissible load of 8000 kg.
The key here is the conservation of momentum.
For the first truck, the momentum is
0(5100 + 4300)
The second truck has a starting momentum of
60(5100 + x)
And finally, after the collision, the momentum of the whole system is
42(5100 + 4300 + 5100 + x)
So let's set the equations for before and after the collision equal to each other.
0(5100 + 4300) + 60(5100 + x) = 42(5100 + 4300 + 5100 + x)
And solve for x, first by adding the constant terms
0(5100 + 4300) + 60(5100 + x) = 42(14500 + x)
Getting rid of the zero term
60(5100 + x) = 42(14500 + x)
Distribute the 60 and the 42.
60*5100 + 60x = 42*14500 + 42x
306000 + 60x = 609000 + 42x
Subtract 42x from both sides
306000 + 18x = 609000
Subtract 306000 from both sides
18x = 303000
And divide both sides by 18
x = 16833.33
So we have the 2nd truck with a load of 16833.33 kg, which is well over it's maximum permissible load of 8000 kg. Let's verify the results by plugging that mass into the before and after collision momentums.
60(5100 + 16833.33) = 60(21933.33) = 1316000
42(5100 + 4300 + 5100 + 16833.33) = 42(31333.33) = 1316000
They match. The 2nd truck was definitely over loaded.</span>
The climate factor that is responsible for the amount of snow on Mt. Kilimanjaro is high elevation. In the concept of precipitation, as an air mass rises and cools, its capacity to hold water vapor lessens. This vapor condenses into water droplets, forming clouds. Terrain with high elevation attracts such formations, bringing with them cloudiness, rainfall, and snowfall.
Answer: Because new theories can come out that better explain observations and experimental results can replace old theories.
Explanation: Theories more than ten years old are usually out of date. Scientists want to prove that the work of other scientists is wrong. New evidence that supports a change prompts scientists to modify earlier theories.
Oneiididudd even said wy the candy shop in the candy store and you I know you got it to get your gift card owywiwywuwywywywtwtwtwtwt teteyy gift cards and gift card gift gift card for your card gift cards to you
Answer:
<u>ω = 1.7 rad/s</u>
Explanation:
Conservation of angular momentum
Assuming the rod is initially hanging vertically at rest.
Initial angular momentum is carried by the bullet only
L = Iω = (mR²)(v/R) = mvR = 0.020(200)(0.7) = 2.8 kg•m²/s
the same angular momentum exists after impact, only the moment of inertia has increased by that of the rod. I = ⅓mR²
2.8 = (⅓(10)(0.7²) + 0.020(0.7²))ω
2.8 = (1.64313333...)ω
ω = 1.70406134...