If the period of a satellite is T=24 h = 86400 s that means it is in geostationary orbit around Earth. That means that the force of gravity Fg and the centripetal force Fcp are equal:
Fg=Fcp
m*g=m*(v²/R),
where m is mass, v is the velocity of the satelite and R is the height of the satellite and g=G*(M/r²), where G=6.67*10^-11 m³ kg⁻¹ s⁻², M is the mass of the Earth and r is the distance from the satellite.
Masses cancel out and we have:
G*(M/r²)=v²/R, R=r so:
G*(M/r)=v²
r=G*(M/v²), since v=ωr it means v²=ω²r² and we plug it in,
r=G*(M/ω²r²),
r³=G*(M/ω²), ω=2π/T, it means ω²=4π²/T² and we plug that in:
r³=G*(M/(4π²/T²)), and finally we take the third root to get r:
r=∛{(G*M*T²)/(4π²)}=4.226*10^7 m= 42 260 km which is the height of a geostationary satellite.
Answer:
Latin
Explanation:
In order for the scientists to have a common and official name for a particular thing that can be understood by every scientist in the world, a single language has been established for the purpose. The language chosen is the Latin language. The official scientific names are given in this language, so it is a necessity for the scientists to know and understand this language. The terms that are commonly used are regional, and they come in many different languages, which is why this language has been chosen. Occasionally, the ancient Greek language is used as well, though much less than the Latin.
Resistance reduces the current. If there is more resistance, there is less current.
Acceleration is the rate of change of a the velocity of an object that is moving. This value is a result of all the forces that is acting on an object which is described by Newton's second law of motion. Calculation of such is straightforward, if we are given the final velocity, the initial velocity and the total time interval. We can just use the kinematic equations. However, if we are not given the final velocity, it would not be possible to use the kinematic equations. One possible to calculate this value would be by generating an equation of distance with respect to time and getting the second derivative of the equation.
Explanation:
it holds protons and neutrons together