Answer:
- magnitude : 1635.43 m
- Angle: 130°28'20'' north of east
Explanation:
First, we will find the Cartesian Representation of the
and
vectors. We can do this, using the formula

where
its the magnitude of the vector and θ the angle. For
we have:


where the unit vector
points east, and
points north. Now, the
will be:

Now, taking the sum:

This is




Now, for the magnitude, we just have to take its length:



For its angle, as the vector lays in the second quadrant, we can use:




Answer:
the direction of rate of change of the momentum is against the motion of the body, that is, downward.
The applied force is also against the direction of motion of the body, downward.
Explanation:
The change in the momentum of a body, if the mass of the body is constant, is given by the following formula:

p: momentum
m: mass
: change in the velocity
The sign of the change in the velocity determines the direction of rate of change. Then you have:

v2: final velocity = 35m/s
v1: initial velocity = 40m/s

Hence, the direction of rate of change of the momentum is against the motion of the body, that is, downward.
The applied force is also against the direction of motion of the body, downward.
5.184 x 10^12 is the answer
Answer:
The speed of sound depends on the medium thru which it travels in contrast to light (electromagnetic) which can travel thru a vacuum.
The speed of sound will depend on the density of the air thru which it travels - the density of air is particularly affected by
humidity - water vapor in the air contributes to less density
temperature - warmer is less dense
motion of air - if the air is not motionless the speed will be affected