Answer:
A
Explanation:
its A because your comparing so comparative
Grapefruit juice. The more acidic something is the more h it has.
Local winds are driven by temperature differences in areas fairly close to each other. If water and land absorbed and released heat at the same rate, there wouldn't be any temperature differences and nothing to power local winds. See the related link for further information.
Complete question:
Consider the hypothetical reaction 4A + 2B → C + 3D
Over an interval of 4.0 s the average rate of change of the concentration of B was measured to be -0.0760 M/s. What is the final concentration of A at the end of this same interval if its concentration was initially 1.600 M?
Answer:
the final concentration of A is 0.992 M.
Explanation:
Given;
time of reaction, t = 4.0 s
rate of change of the concentration of B = -0.0760 M/s
initial concentration of A = 1.600 M
⇒Determine the rate of change of the concentration of A.
From the given reaction: 4A + 2B → C + 3D
2 moles of B ---------------> 4 moles of A
-0.0760 M/s of B -----------> x

⇒Determine the change in concentration of A after 4s;
ΔA = -0.152 M/s x 4s
ΔA = -0.608 M
⇒ Determine the final concentration of A after 4s
A = A₀ + ΔA
A = 1.6 M + (-0.608 M)
A = 1.6 M - 0.608 M
A = 0.992 M
Therefore, the final concentration of A is 0.992 M.
Answer:
a) x = ⅔ d
, b) the charge must be negative, c) Q
Explanation:
a) In this exercise the force is electric between the charges, we are asked that the system of the three charges is in equilibrium, we use Newton's second law. Balance is on the third load that we are placing
∑ F = 0
-F₁₂ + F₂₃ = 0
F₁₂ = F₂₃
let's replace the values
k Q Q / r₁₂² = k Q 4Q / r₂₃²
Q² / r₁₂² = 4 Q² / r₂₃²
suppose charge 3 is placed at point x
r₁₂ = x
r₂₃ = d-x
we substitute
1 / x² = 4 / (d-x) 2
1 / x = 2 / (d-x)
x = 2 (x-d)
x = 2x -2d
3x = 2d
x = ⅔ d
b) The sign of the charge must be negative, to have an attractive charge on the two initial charges
c) Q