If the element has a charge of +2 it has lost two electrons giving it an overall positive charge making it a cation. In order to find the number of electrons, take the elements atomic number and subtract two since it lost two electrons
Answer:
moving arrow
have a great day ahead
please mark me as the brainliest
6.02 x 10²⁴ molecules of C2H6O
Answer: CoBr3 < K2SO4 < NH4 Cl
Justification:
1) The depression of the freezing point of a solution is a colligative property, which means that it depends on the number of particles of solute dissolved.
2) The formula for the depression of freezing point is:
ΔTf = i * Kf * m
Where i is the van't Hoof factor which accounts for the dissociation of the solute.
Kf is the freezing molal constant and only depends on the solvent
m is the molality (molal concentration).
3) Since, you are assuming equal concentrations and complete dissociation of the given solutes, the solute with more ions in the molecular formula will result in the solution with higher depression of the freezing point (lower freezing point).
4) These are the dissociations of the given solutes:
a) NH4 Cl (s) --> NH4(+)(aq) + Cl(-) (aq) => 1 mol --> 2 moles
b) Co Br3 (s) --> Co(3+) (aq) + 3Br(-)(aq) => 1 mol --> 4 moles
c) K2SO4 (s) --> 2K(+) (aq) + SO4 (2-) (aq) => 1 mol --> 3 moles
5) So, the rank of solutions by their freezing points is:
CoBr3 < K2SO4 < NH4 Cl
Answer: The correct option is A.
Explanation: The given molecules are the molecules of same element.
These molecules are considered as diatomic species.
Polar molecules are the molecules in which some polarity is present in the bond. These molecules are formed when there is some difference in the electronegativities of the elements. Example: HCl
Non-polar molecules are the molecules where no polarity is present in the bond. These molecules are formed when there is no difference in the electronegativities of the elements. Example: 
The given molecules are non-polar in nature.
Hence, these molecules must be non-polar. So, the correct option is A.