Answers:
1. 3-ethyl-3-methylheptane; 2. 2,2,3,3-tetramethylpentane; 3. hexa-2,4-diene.
Explanation:
<em>Structure 1
</em>
- Identify and name the longest continuous chain of carbon atoms (the main chain has 7 C; ∴ base name = heptane).
- Identify and name all the substituents [a 1C substituent (methyl) and a 2C substituent (methyl).
- Number the main chain from the end closest to a substituent.
- Identify the substituents by the number of the C atom on the main chain. Use hyphens between letters and numbers (3-methyl, 3-ethyl).
- Put the names of the substituents in alphabetical order in front of the base name with no spaces (3-ethyl-3-methylheptane)
<em>Structure 2</em>
- 5C. Base name = pentane
- Four methyl groups.
- Number from the left-hand end.
- If there is more than one substituent of the same type, identify each substituent by its locating number and use a multiplying prefix to show the number of each substituent. Use commas between numbers (2,2,3,3-tetramethyl).
- The name is 2,2,3,3-tetramethylpentane.
<em>Structure 3
</em>
- Identify and name the longest continuous chain of carbon atoms that passes through as many double bonds as possible. Drop the <em>-ne</em> ending of the alkane to get the root name <em>hexa-</em>.
- (No substituents).
- Number the main chain from the end closest to a double bond.
- If there is more than one double bond use a multiplying prefix to indicate the number of double bonds (two double bonds = diene) and use the smaller of the two numbers of the C=C atoms as the double bond locators (2,4-diene)
- Put the functional group name at the end of the root name (hexa-2,4-diene).
<em>Note</em>: The name 2,4-hexadiene is <em>acceptable</em>, but the <em>Preferred IUPAC Name</em> puts the locating numbers as close as possible in front of the groups they locate.
% error = 3.4 %
Percent error = |accepted value - experimental value|/accepted value × 100%
∴ % error = |355 mL – 343 mL|/355 mL × 100 % = |12|/355 × 100 % = 3.4 %
Answer:
The amount of electric power produced for each unit of thermal power gives the plant its thermal efficiency, and due to the second law of thermodynamics there is an upper limit to how efficient these plants can be.
The mole fraction is calculated using the formula:
mole fraction of component A = # of moles of component A / # of total moles of the solution.
A) number of moles of ethanol
To calculate the number of moles of ethanol, you need its density, which will permit you to determine the mass of the 10.00 ml, and then convert into moles using the molar mass of ethanol.
The normal density of ethanol is 0.789 g/ml
density = mass / volume => mass = density * volume = 0.789 g/ml * 10.00 ml = 7.890 g
Molar mass of ethanol = 46.07 g/mol
number of moles = mass / molar mass = 7.890g / 46.07 g/mol = 0.1713 mol
B) number of moles of water
density of water = 1.00 g/mol
mass of water = density * volume = 1.00 g/mol * 2.00 ml = 2.00 g
number of moles of water = mass / molar mass = 2.00 g / 18.0 g/mol = 0.111 mol
C) mole fraction
mole fraction of ethanol = number of moles of ethanol / number of moles of solution
number of moles of ethanol = 0.1713 / (0.1713 + 0.111) = 0.1713 / 0.2824 = 0.607
Answer: 0.607
The volume of the final solution may be calculated by adding the volume of the two components. This is 10.00 ml of ethanol + 2.00 ml of water makes 12.00 ml of solution.
It is not clear what the second question is meant for. Some context is missing. If you know density and you know maqss (or can calculate the mass from other data) you do not need to measure the volume.