Answer:
5b(2 - 5b²)
Step-by-step explanation:
Simply take out GCFs to factor out the expression:
Step 1: Factor out GCF of 5
5(2b - 5b³)
Step 2: Factor out GCF of <em>b</em>
5b(2 - 5b²)
We can't factor the quadratic any further so that is our final answer.
Answer:
x = -1 and y = 1/2
Step-by-step explanation:
Let u = 1/x, and v = 1/y
Then the pair of equations
-3/x + 4/y = 11
1/x - 2/y = -5
Can be written as
-3u + 4v = 11 .................................(1)
u - 2v = -5......................................(2)
From (2)
u = 2v - 5 .......................................(3)
Substituting (3) into (1)
-3(2v - 5) + 4v = 11
-6v + 15 + 4v = 11
-6v + 4v = 11 - 15
-2v = -4
v = 4/2 = 2
Substituting this value of v in (3)
u = 2v - 5
u = 2(2) - 5
= 4 - 5
= -1
That is
u = -1, v = 2
Since u = 1/x, and v = 1/y, we have
1/x = -1
=> x = -1
And
1/y = 2
=> y = 1/2
Therefore
x = -1 and y = 1/2
Answer:
0.6710
Step-by-step explanation:
The diameters of ball bearings are distributed normally. The mean diameter is 107 millimeters and the population standard deviation is 5 millimeters.
Find the probability that the diameter of a selected bearing is between 104 and 115 millimeters. Round your answer to four decimal places.
We solve using z score formula
z = (x-μ)/σ, where
x is the raw score
μ is the population mean = 107 mm
σ is the population standard deviation = 5 mm
For x = 104 mm
z = 104 - 107/5
z = -0.6
Probability value from Z-Table:
P(x = 104) = 0.27425
For x = 115 mm
z = 115 - 107/5
z = 1.6
Probability value from Z-Table:
P(x = 115) = 0.9452
The probability that the diameter of a selected bearing is between 104 and 115 millimeters is calculated as:
P(x = 115) - P(x = 104)
0.9452 - 0.27425
= 0.67095
Approximately = 0.6710
11) -x + y = -1 ; 2x - y = 0
y = -1 + x ; 2x - (-1+x) = 0 ⇒ 2x + 1 - x = 0 ⇒x = -1
y = -1 + (-1) ⇒ y = -2
12) -2x + y = -20 ; 2x + y = 48
y = -20 + 2x ; 2x + (-20 + 2x) = 48 ⇒ 2x -20 + 2x = 48 ⇒ 4x = 48 + 20
4x = 68 ⇒ x = 68/4 ⇒ x = 17
y = -20 + 2(17) ⇒ y = -20 + 34 ⇒ y = 14
13) 3x -y = -2 ; -2x + y = 3
y = 3 + 2x ; 3x - (3 + 2x) = -2 ⇒ 3x - 3 - 2x = -2 ⇒ x = -2 + 3 ⇒ x = 1
y = 3 + 2(1) ⇒ y = 3 + 2 ⇒ y = 5
14) x - y = 4 ; x - 2y = 10
x = 4 + y ; (4 + y) - 2y = 10 ⇒ 4 + y - 2y = 10 ⇒ 4 - y = 10
⇒ -y = 10 - 4 ⇒ -y = 6 ⇒ y = -6
x = 4 + (-6) ⇒ x = 4 - 6 ⇒ x = -2
15) x + 2y = 5 ; 3x + 2y = 17
x = 5 - 2y ; 3(5-2y) + 2y = 17 ⇒ 15 - 6y + 2y = 17 ⇒ -4y = 17 - 15
⇒ -4y = 2 ⇒ y = -2/4 ⇒ y = -1/2
x = 5 - 2(-1/2) ⇒ x = 5 + 2/2 ⇒ x = 5 + 1 ⇒ x = 6
Step-by-step explanation:
you collect like terms from both sides that is, the variables on one side and the constants on the other side