Answer: final temperatures will be
a) water 21 C
b) concrete 20.005 C
c) steel 20.008 C
d) mercury 53 C
Explanation:
Change in temp dT = dH / (mass x specific heat)
Specific heat of these materials can be found from many sources:
water = 1 kcal / kg C
concrete = 210 kcal / kg C
steel = 114 kcal / kg C
mercury = 0.03 kcal /kg C
So dT (water) from 1 kcal heat into 1 kg water = 1 kcal / (1 kg x 1 kcal/kg C) = 1 C therefore the final temperature is 20 + 1 = 21 C
But dT (steel) = 1 kcal / (1kg x 114 kcal/kg C) = 0.008 C so the final temperature is 20 + 0.008 = 20.008 C
The results for concrete and mercury are calculated in the same way
If they were not repeatable people would think the experiment is not accurate. If it can be repeated than the data can prove a very valid point.
Explanation:
1st question answer true
2nd question low resistance
hope it helps
Use M1V1 = M2V2 to solve
3(V1) = 2.8 * 1.6
3(V1) = 4.48
V1 = 1.493 L of stock solution
When 440.23 grams of iron(III) oxide are reacted with hydrogen gas, the amount of iron produced will be 307.66 grams
<h3>Stoichiometric calculation</h3>
From the equation of the reaction:

The mole ratio of iron(III) oxide to produced iron is 1:2.
Mole of 440.23 iron(III) oxide = 440.23/159.69 = 2.76 moles
Equivalent mole of produced iron = 2.76 x 2 = 5.52 moles
Mass of 5.52 moles of iron = 5.52 x 55.8 = 307.66 grams
More on stoichiometric calculations can be found here; brainly.com/question/27287858
#SPJ1