Answer;
-Chlorine is more reactive than silicon
Explanation;
-As you move across a period, the nuclear charge will increase; the number of energy levels will stay the same, so there is a stronger and stronger attraction for the electrons.
-The electrons are being held more tightly as you move across a period. It becomes more and more difficult to lose electrons and consequently the reactivity of non metals increases as you go from left to right across the periodic table; Therefore; chlorine is more reactive than silicon.
Answer:
A biology investigation usually starts with an observation—that is, something that catches the biologist’s attention. For instance, a cancer biologist might notice that a certain kind of cancer can't be treated with chemotherapy and wonder why this is the case. A marine ecologist, seeing that the coral reefs of her field sites are bleaching—turning white—might set out to understand why.
How do biologists follow up on these observations? How can you follow up on your own observations of the natural world? In this article, we’ll walk through the scientific method, a logical problem-solving approach used by biologists and many other scientists.
Explanation:
The choices that should have accompanied this question were:
A. 1
<span>B. 2 </span>
<span>C. 3 </span>
<span>D. 4
</span>
My answer is B. 2.
Below is an explanation, I found while doing the research.
<span>Phosphate needs 3 electrons each totaling 6 electrons so each zinc will need to give up 2 electrons.
Phosphate wants to imitate the electron configuration of Argon because noble configurations are the most stable. With P getting the extra electrons the valence shell will be 3s2 3p6, which is the same as Argon. Without the extra electrons, the P valence shell looks like this 3s2 3p3, now you can see why each phosphorus wants 3 more electrons, that will make it 3s2 3p6, just like Argon.</span>
Answer:
Average atomic mass = 85.557 amu.
Explanation:
Given data:
Percent abundance of Rb-85 = 72.15%
Percent abundance of Rb-87 = 27.85%
Average atomic mass = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (72.15×85)+(27.85×87) /100
Average atomic mass = 6132.75 + 2422.95 / 100
Average atomic mass = 8555.7 / 100
Average atomic mass = 85.557 amu.