The area would be 144cm^2.
In order to find the area, we need to know the length of the rectangle. We can find that using the perimeter formula.
2l + 2w = P
2l + 2(36) = 80
2l + 72 = 80
2l = 8
l = 4
So now that we know the length is 4, we can find the area using that formula.
A = lw
A = (4)(36)
A = 144
180 seconds hope this helps
Answer: It is B
Rae will ask 75 randomb students in her school
Step-by-step explanation:
honestly I just guessed, and got it right
The absolute value function |<em>x</em>| always returns a non-negative number. It takes any number <em>x</em> and returns <em>x</em> if it's already non-negative, or -<em>x</em> if it is negative in order to make it positive.

For the equation
-3 + 4 |2<em>x</em> - 5| = 14
rearrange terms to get
|2<em>x</em> - 5| = 17/4
Now,
• if 2<em>x</em> - 5 ≥ 0, then |2<em>x</em> - 5| = 2<em>x</em> - 5. Then
2<em>x</em> - 5 = 17/4
• and if instead 2<em>x</em> - 5 < 0, then |2<em>x</em> - 5| = -(2<em>x</em> - 5), so that
-(2<em>x</em> - 5) = 17/4, or
2<em>x</em> - 5 = -17/4
In the first case,
2<em>x</em> - 5 = 17/4
2<em>x</em> = 17/4 + 5 = 37/4
<em>x</em> = 37/8
In the second case,
2<em>x</em> - 5 = -17/4
2<em>x</em> = -17/4 + 5 = 3/4
<em>x</em> = 3/8
Answer:
c, e, f, and i
Step-by-step explanation:
a. is bounded above at y = 1 and below at y = 0
b. is unbounded both above and below
c. is bounded below at y = 0 and unbounded above
d. is unbounded both above and below
e. is bounded below at y = 0 and unbounded above
f. is bounded below at y = 0 and unbounded above
g. is bounded below at y = 0 and bounded above at y = 1
h. is unbounded both above and below
i. is bounded below at y = 0 and unbounded above
j. is unbounded both above and below