The answer would be A will increase and T <span>will decrease.
The product of this reaction emits red light because it absorbs green and blue light. As the reaction occurs, the concentration of the product increase. This will makes absorbance of green and blue light increases and the solution will become redder.</span>
Answer:
Clavulanic acid has two (2) chiral centers.
Explanation:
A chiral center is a center (usually carbon) with four different substituents.
The structure of clavulanic acid is shown in the attachment below.
Consider the labeled diagram in the attachment,
Carbon A is not a chiral carbon because it has two hydrogen atoms attached to it
Carbon B is not a chiral carbon because it has only three substituents
Carbon C is a chiral carbon because it has four different substituents
Carbon D is a chiral carbon because it has four different substituents
Carbon E is not a chiral carbon because it has only three atoms directly attached to it
Carbon F is not a chiral carbon because it has only three atoms directly attached to it
Carbon G is not a chiral carbon because it has two hydrogen atoms attached to it
Carbon H is not a chiral carbon because it has only three substituents
Then, only carbons C and D are chiral carbons.
Hence, clavulanic acid have two (2) chiral centers.