In a non-flowering plant, the embryo is in spores found in the stem, and in a flowering plant, the embryo is in seeds found in the flower.
(don’t count on my answer but I think it might be this one and I apologize if you get it wrong)
<span>A.to calculate the amount of product that would form
</span>
Answer:
b. ΔE rxn is a measure of heat
Explanation:
a. ΔHrxn is the heat of reaction. <em>TRUE. </em>ΔHrxn or change in enthalpy of reaction is per definition the change in heat that is involved in a chemical reaction.
b. ΔErxn is a measure of heat. <em>FALSE. </em>Is the change in internal energy of a reaction
c. An exothermic reaction gives heat off heat to the surroundings. <em>TRUE</em>. An exothermic reaction is a chemical reaction that releases heat.
d. Endothermic has a positive ΔH. <em>TRUE. </em>When a process is exothermic ΔH<0 and when the process is endothermic ΔH>0
e. Enthalpy is the sum of a system's internal energy and the product of pressure and volume. <em>TRUE. </em>Under constant pressure and volume the formula is ΔH = ΔE + PV
I hope it helps!
Answer:
When factories mass produce something it produces smoke. That smoke can be harmful to something called the ozone layer. The ozone layer is part of earth's atmosphere that protects us from the suns burning heat. When that layer is damaged the sun's heat burns through heating up the world and melting ice causing the water levels to rise. All of this can make working conditions less safe, cause more flooding, and have the sun cause cancer.
Answer:
The boiling point of a 8.5 m solution of Mg3(PO4)2 in water is<u> 394.91 K.</u>
Explanation:
The formula for molal boiling Point elevation is :

= elevation in boiling Point
= Boiling point constant( ebullioscopic constant)
m = molality of the solution
<em>i =</em> Van't Hoff Factor
Van't Hoff Factor = It takes into accounts,The abnormal values of Temperature change due to association and dissociation .
In solution Mg3(PO4)2 dissociates as follow :

Total ions after dissociation in solution :
= 3 ions of Mg + 2 ions of phosphate
Total ions = 5
<em>i =</em> Van't Hoff Factor = 5
m = 8.5 m
= 0.512 °C/m
Insert the values and calculate temperature change:



Boiling point of pure water = 100°C = 273.15 +100 = 373.15 K

= 373.15 K[/tex]
21.76 = T - 373.15
T = 373.15 + 21.76
T =394.91 K