Answer:

Explanation:
Hello there!
In this case, since the thermodynamic definition of the Gibbs free energy for a change process is:

It is possible to plug in the given H, T and S with consistent units, to obtain the correct G as shown below:

Best regards!
The cohesive forces between liquid molecules are responsible for the phenomenon known as surface tension<span>. I think the correct answer is option A. H2O will have the highest surface tension due to the hydrogen bonds that are present. Hope this answers the question. Have a nice day.</span>
2H2(g) + O2(g) → 2H2O(1) 0 260 g 0.2068 0.180 g 2008
When 45.0 g of CH4 reacts with excess O2, the actual yield of CO2 is 118 g. What is the percent yield? CHA(g) + 2O2(g) - CO2(g) + 2H2O(g) 73.6% 67.9% 95.2% 86.4%
For the reaction: 2503(g) + 790 kcal - 25(s) + 3O2(g), how many kcal are needed to form 1.5 moles O2(g)? 790 kcal 395 kcal 2370 kcal 411 kcal
When 3 moles of Ny are mixed with 5 moles of H2 the limiting reactant is N2(g) + 3H2(g) - 2NH3(g) H2 NH3 ОООО H20 O N₂
Answer:
1.23 × 10³ N
Explanation:
Step 1: Given and required data
- Mass of the person (m): 125 kg
- Acceleration due to the gravitational force (g): 9.81 m/s²
Step 2: Calculate the force acting between the Earth and a 125-kg person standing on the surface of the Earth
We will use Newton's second law of motion.
F = m × g
F = 125 kg × 9.81 m/s²
F = 1.23 × 10³ N
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Thus, for 0.904 g of precipitate, that is lead (II) iodide, we can compute the initial moles of lead (II) ions in lead (II) nitrate:

Finally, the resulting molarity in 30.8 mL (0.0308 L):

Regards.