Answer:
Commonly available heat-storage materials cannot usually store the energy for a prolonged period. If a solid material could conserve the accumulated thermal energy, then its heat-storage application potential is considerably widened. Here we report a phase transition material that can conserve the latent heat energy in a wide temperature range, T<530 K and release the heat energy on the application of pressure. This material is stripe-type lambda-trititanium pentoxide, λ-Ti3O5, which exhibits a solid–solid phase transition to beta-trititanium pentoxide, β-Ti3O5. The pressure for conversion is extremely small, only 600 bar (60 MPa) at ambient temperature, and the accumulated heat energy is surprisingly large (230 kJ L−1). Conversely, the pressure-produced beta-trititanium pentoxide transforms to lambda-trititanium pentoxide by heat, light or electric current. That is, the present system exhibits pressure-and-heat, pressure-and-light and pressure-and-current reversible phase transitions. The material may be useful for heat storage, as well as in sensor and switching memory device applications.
Explanation:
Answer:
3.1°C
Explanation:
Using freezing point depression expression:
ΔT = Kf×m×i
<em>Where ΔT is change in freezing point, Kf is freezing point depression constant (5.12°c×m⁻¹), m is molality of the solution and i is Van't Hoff factor constant (1 For I₂ because doesn't dissociate in benzene).</em>
Molality of 9.04g I₂ (Molar mass: 253.8g/mol) in 75.5g of benzene (0.0755kg) is:
9.04g ₓ (1mol / 253.8g) = 0.0356mol I₂ / 0.0755kg = 0.472m
Replacing in freezing point depression formula:
ΔT = 5.12°cm⁻¹×0.472m×1
ΔT = 2.4°C
As freezing point of benzene is 5.5°C, the new freezing point of the solution is:
5.5°C - 2.4°C =
<h3>3.1°C</h3>
<em />
The answer is C. 4.6 billion years. Hoped I helped. :)
Answer:
The answer to your question is the letter D. a decomposition reaction
Explanation:
This is a brief description of the main chemical reactions.
a) A synthesis reaction is when two reactants are combined to form only one product.
b) A disynthesis reaction. I have not heard about this chemical reaction, I think it does not exist.
c) A combustion reaction is when an organic molecule reacts with oxygen to form carbon dioxide and water.
d) A decomposition reaction is when one reactant splits to form two or more products.
Answer:
d and e - Sodium and antimony
Explanation:
The atomic numbers remain the same, while the mass numbers change (because neutrons are being added or taken away).
sodium has an atomic number of 19 and a mass number of 39 - in d, it has an atomic number of 19 but a mass number of 40. therefore, it is an isotope
antimony has an atomic number of 51 and a mass number of 121.60 - in e, it has an atomic number of 51, but a mass number of 123. therefore, it is an isotope