Answer:
When 0.250 moles of a gas is placed in a container at 25 °C, it exerts a pressure of 700 mm Hg.
Explanation:
Lets name the unknown metal as M. Cation would be M³⁺.
the molecular formula of the compound is M₂(SO₄)₃
the mass of one mole - (molar mass of M x2 + 3 x molar mass of SO₄²⁻)
= 2M + 96 x 3
= 2M + 288
In 1 mol if there's 72.07% of sulphate ,
then 72.07 % corresponds to 288 g
1 % is then - 288/72.07
100 % of the compound - 288/72.07 x 100
molar mass of the compound - 399.6 g/mol
mass of 2M - 399.6 - 288 = 111.6 g
molar mass of M - 111.6 /2 = 55.8 g/mol
the element with molar mass of 55.8 is Fe.
Unknown metal is iron(III) , Fe³⁺
Answer: 4.4 x 10^-7
Explanation:
The dissociation equation for this reaction is:
MgCO3 (s) → Mg+2 (aq) + CO3-2 (aq)
(Here 0.08 >>> x )

So the solubility MgCO₃ in a solution that containing 0.080 M Mg²⁺ is 4.4 x 10^-7
Answer:
Explanation:
[ so₃] = 4.37 x 10⁻²
[so₂] = 4.77 x 10⁻²
[ o₂] = 4.55 x 10⁻²
Qc = (4.37)²x10⁻⁴ /(4.77)².(4.55) x 10⁻⁶ =18.44
Qc is less than Kc hence in order to reach equilibrium more of so₃ will be produced . Statement 1 is true.
Kc is always constant . Statement 2 is false.
Statement 3 is false because statement 1 is true.
Qc Is smaller than Kc . So statement 4 is false.
The reaction is not in equilibrium. Statement 5 is false.