Volume = 22.4 dm3
n = 2 mol of H2
n = 1 mol of N2
Temperature = 273.15
All H2 reacts
reaction
N2 + 3H2 = 2NH3
1:3 ratio
Calculation:
N2 initial - N2 reacted = Final N2
1 - 2*(1/3) = 0.3333 mol of N2 left
H2 = 0 left
NH3 formed = 2/3*1 = 2/3 = 0.666
Total mol:
0.3333 + 0.666 = 1 mol
Apply the equation :
PV = nRT
P = nRT/V = 1*0.0082*(273.15)/(22.4) = 0.0999924 atm
PH2 = 0
PN2 = 1/3*0.0999924 = 0.0333308 atm
PNH3 = 2/3*0.0999924 = 0.0666616 atm
Answer is 0.0666616 atm
They travel through all medium types
Answer:
carbon with graphite as the allotrope
Answer : The correct option is, (D) 100 times the original content.
Explanation :
As we are given the pH of the solution change. Now we have to calculate the ratio of the hydronium ion concentration at pH = 5 and pH = 3
As we know that,
![pH=-\log [H_3O^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH_3O%5E%2B%5D)
The hydronium ion concentration at pH = 5.
![5=-\log [H_3O^+]](https://tex.z-dn.net/?f=5%3D-%5Clog%20%5BH_3O%5E%2B%5D)
..............(1)
The hydronium ion concentration at pH = 3.
![3=-\log [H_3O^+]](https://tex.z-dn.net/?f=3%3D-%5Clog%20%5BH_3O%5E%2B%5D)
................(2)
By dividing the equation 1 and 2 we get the ratio of the hydronium ion concentration.
![\frac{[H_3O^+]_{original}}{[H_3O^+]_{final}}=\frac{1\times 10^{-5}}{1\times 10^{-3}}=\frac{1}{100}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH_3O%5E%2B%5D_%7Boriginal%7D%7D%7B%5BH_3O%5E%2B%5D_%7Bfinal%7D%7D%3D%5Cfrac%7B1%5Ctimes%2010%5E%7B-5%7D%7D%7B1%5Ctimes%2010%5E%7B-3%7D%7D%3D%5Cfrac%7B1%7D%7B100%7D)
![100\times [H_3O^+]_{original}=[H_3O^+]_{final}](https://tex.z-dn.net/?f=100%5Ctimes%20%5BH_3O%5E%2B%5D_%7Boriginal%7D%3D%5BH_3O%5E%2B%5D_%7Bfinal%7D)
From this we conclude that when the pH of a solution changes from a pH of 5 to a pH of 3, the hydronium ion concentration is 100 times the original content.
Hence, the correct option is, (D) 100 times the original content.