Answer:
Like any wave, a sound wave doesn't just stop when it reaches the end of the medium or when it encounters an obstacle in its path. Rather, a sound wave will undergo certain behaviors when it encounters the end of the medium or an obstacle. Possible behaviors include reflection off the obstacle, diffraction around the obstacle, and transmission (accompanied by refraction) into the obstacle or new medium
Answer:
0.29mol/L or 0.29moldm⁻³
Explanation:
Given parameters:
Mass of MgSO₄ = 122g
Volume of solution = 3.5L
Molarity is simply the concentration of substances in a solution.
Molarity = number of moles/ Volume
>>>>To calculate the Molarity of MgSO₄ we find the number of moles using the mass of MgSO₄ given.
Number of moles = mass/ molar mass
Molar mass of MgSO₄:
Atomic masses: Mg = 24g
S = 32g
O = 16g
Molar mass of MgSO₄ = [24 + 32 + (16x4)]g/mol
= (24 + 32 + 64)g/mol
= 120g/mol
Number of moles = 122/120 = 1.02mol
>>>> From the given number of moles we can evaluate the Molarity using this equation:
Molarity = number of moles/ Volume
Molarity of MgSO₄ = 1.02mol/3.5L
= 0.29mol/L
IL = 1dm³
The Molarity of MgSO₄ = 0.29moldm⁻³
Answer:
Force of attraction = 35.96
N
Explanation:
Given: charge on anion = -2
Charge on cation = +2
Distance = 1 nm =
m
To calculate: Force of attraction.
Solution: The force of attraction is calculated by using equation,
---(1)
where, q represents the charge and the subscripts 1 and 2 represents cation and anion.
k = 
F = force of attraction
r = distance between ions.
Substituting all the values in the equation (1) the equation becomes

Force of attraction = 35.96
N
Answer:
Inferring is when a scientist uses reasoning to explain or interpret the things they observe
Answer:Phase changes require either the addition of heat energy (melting, evaporation, and sublimation) or subtraction of heat energy (condensation and freezing). ... Changing the amount of heat energy usually causes a temperature change.
Explanation: