Answer:
See the image 1
Explanation:
If you look carefully at the progress of the SN2 reaction, you will realize something very important about the outcome. The nucleophile, being an electron-rich species, must attack the electrophilic carbon from the back side relative to the location of the leaving group. Approach from the front side simply doesn't work: the leaving group - which is also an electron-rich group - blocks the way. (see image 2)
The result of this backside attack is that the stereochemical configuration at the central carbon inverts as the reaction proceeds. In a sense, the molecule is turned inside out. At the transition state, the electrophilic carbon and the three 'R' substituents all lie on the same plane. (see image 3)
What this means is that SN2 reactions whether enzyme catalyzed or not, are inherently stereoselective: when the substitution takes place at a stereocenter, we can confidently predict the stereochemical configuration of the product.
Answer:
the fish can't survive in that warm water
Explanation:
when the factory puts that warm water into the stream where the fish live they changed their environment. by adding unknown chemicals and changing the temp of the water the fish start to die.
The fish aren't used to living in that warm water, and if they can't adapt fast enough they will die, also the unknown chemicals that could be in the water will act as a poison for them making that stream unable to support any life.
Answer:
134.8 mmHg is the vapor pressure for solution
Explanation:
We must apply the colligative property of lowering vapor pressure, which formula is: P° - P' = P° . Xm
P° → Vapor pressure of pure solvent
P' → Vapor pressure of solution
Xm → Mole fraction for solute
Let's determine the moles of solute and solvent
17.5 g . 1 mol/180 g = 0.0972 moles
82 g . 1mol / 32 g = 2.56 moles
Total moles → moles of solute + moles of solvent → 2.56 + 0.0972 = 2.6572 moles
Xm → moles of solute / total moles = 0.0972 / 2.6572 = 0.0365
We replace the data in the formula
140 mmHg - P' = 140 mmHg . 0.0365
P' = - (140 mmHg . 0.0365 - 140mmHg)
P' = 134.8 mmHg
88.98 %
The Balance Chemical Equation is as follow,
2 HCl + Pb(NO₃)₂ → 2 HNO₃ + PbCl₂
According to equation,
331.2 g (1 mole) Pb(NO₃)₂ produces = 278.1 g (1 mole) PbCl₂
So,
870 g of Pb(NO₃)₂ will produce = X g of PbCl₂
Solving for X,
X = (870 g × 278.1 g) ÷ 331.2 g
X = 730.5 g of PbCl₂
Therefore,
Theoretical Yield = 730.5 g
Also as given,
Actual Yield = 650 g
So using following formula for percentage yield,
%age Yield = (Actual Yield / Theoretical Yield) × 100
Putting values,
%age Yield = (650 g / 730.5 g) × 100
%age Yield = 88.98 %
Brianliest please and thank you.