Answer with Step-by-step explanation:
Let F be a field .Suppose
and 
We have to prove that a has unique multiplicative inverse.
Suppose a has two inverses b and c
Then,
where 1 =Multiplicative identity

(cancel a on both sides)
Hence, a has unique multiplicative inverse.
The slope of the line that contains the point (13,-2) and (3,-2) is 0
<em><u>Solution:</u></em>
Given that we have to find the slope of the line
The line contains the point (13,-2) and (3,-2)
<em><u>The slope of line is given as:</u></em>

Where, "m" is the slope of line
Here given points are (13,-2) and (3,-2)

<em><u>Substituting the values in formula, we get,</u></em>

Thus the slope of line is 0
Find m∠BOC, if m∠MOP = 110°.
Answer:
m∠BOC= 40 degrees
Step-by-step explanation:
A diagram has been drawn and attached below.
- OM bisects AOB into angles x and x respectively
- ON bisects ∠BOC into angles y and y respectively
- OP bisects ∠COD into angles z and z respectively.
Since ∠AOD is a straight line
x+x+y+y+z+z=180 degrees

We are given that:
m∠MOP = 110°.
From the diagram
∠MOP=x+2y+z
Therefore:
x+2y+z=110°.
Solving simultaneously by subtraction

x+2y+z=110°.
We obtain:
x+z=70°
Since we are required to find ∠BOC
∠BOC=2y
Therefore from x+2y+z=110° (since x+z=70°)
70+2y=110
2y=110-70
2y=40
Therefore:
m∠BOC= 40 degrees
Answer:
50
Step-by-step explanation:
The values of a triangle have to equal 180. Subtract 180 by the two angles.
180-52=128
128-78=50
So M is 80 degrees.
-hope it helps
The correct answer would be angle bisector