Answer:
27 liters of hydrogen gas will be formed
Explanation:
Step 1: Data given
Number of moles C = 1.03 moles
Pressure H2 = 1.0 atm
Temperature = 319 K
Step 2: The balanced equation
C +H20 → CO + H2
Step 3: Calculate moles H2
For 1 mol C we need 1 mol H2O to produce 1 mol CO an 1 mol H2
For 1.03 moles C we'll have 1.03 moles H2
Step 4: Calculate volume H2
p*V = n*R*T
⇒with p = the pressure of the H2 gas = 1.0 atm
⇒with V = the volume of H2 gas = TO BE DETERMINED
⇒with n = the number of moles H2 gas = 1.03 moles
⇒with R = the gas constant = 0.08206 L*Atm/mol*K
⇒with T = the temperature = 319 K
V = (n*R*T)/p
V = (1.03 * 0.08206 *319) / 1
V = 27 L
27 liters of hydrogen gas will be formed
The substance that releases the greatest amount of ions will have the greatest attractive forces within its solution, resulting in a reduced freezing point.
K₂SO₄ yields 3 ions
NH₄I yields 2 ions
CoCl₃ yields 4 ions
Freezing points:
CoCl₃ < K₂SO₄ < NH₄I
The outermost energy shell of an atom
because they are involved in forming bonds
Iron (iii) chloride is obtained by vapor condensation from the reaction between chlorine gas and iron fillings.
<h3>How can iron (iii) chloride be formed from iron fillings?</h3>
Iron (ii) chloride can be formed from iron fillings in the laboratory as follows:
- Iron fillings + Cl₂ → FeCl₃
Chlorine gas is introduced into a reaction vessel containing iron fillings and the iron (iii) chloride vapor formed is obtained by condensation.
In conclusion, iron (iii) chloride is formed by the the direct combination of iron fillings and chlorine gas.
Learn more about iron (iii) chloride at: brainly.com/question/14653649
#SPJ1
Answer:
5.64×10²³ atoms C
Explanation:
Convert moles of H to moles of C:
2.81 mol H × (2 mol C / 6 mol H) = 0.937 mol C
Convert moles of C to atoms of C:
0.937 mol C × (6.02×10²³ atoms C / mol C) = 5.64×10²³ atoms C