Answer:
37.14 %
Explanation:
Using the equation, mass, M = D1 * V1
= D2 * V2
Where,
D1 = density of the liquid Nitrogen
D2 = density of gaseous Nitrogen
V1 = volume of the liquid Nitrogen
V2 = volume of the gaseous Nitrogen
Calculating V2,
0.808 * 185 = 1.15 * V2
Volume of Nitrogen after expansion = 129.98 m3.
Volume = L * b * h
= 10 * 10 * 3.5
Volume of the room = 350 m3.
Fraction of air = volume of Nitrogen after expansion/volume of the room * 100
= 129.98/350 *100
= 37.14 %
Answer:
The answer to the question is
The specific heat capacity of the alloy = 1.77 J/(g·°C)
Explanation:
To solve this, we list out the given variables thus
Mass of alloy = 45 g
Initial temperature of the alloy = 25 °C
Final temperature of the alloy = 37 °C
Heat absorbed by the alloy = 956 J
Thus we have
ΔH = m·c·(T₂ - T₁) where ΔH = heat absorbed by the alloy = 956 J, c = specific heat capacity of the alloy and T₁ = Initial temperature of the alloy = 25 °C , T₂ = Final temperature of the alloy = 37 °C and m = mass of the alloy = 45 g
∴ 956 J = 45 × C × (37 - 25) = 540 g·°C×c or
c = 956 J/(540 g·°C) = 1.77 J/(g·°C)
The specific heat capacity of the alloy is 1.77 J/(g·°C)
Blood flowing into and out your heart makes your pulse
It would be Magnesium = 1 atom, Oxygen = 2 atoms, Hydrogen = 2 atoms. It has 5 atoms total. There is 1 magnesium and you multiply each element by the the 2 outside the parenthesis to get 2 oxygen and 2 hydrogen.
yeag
Explanation:
2SrO + 4NO2 + O. The thermal decomposition of strontium nitrate to produce strontium oxide, nitrogen dioxide and oxygen. This reaction takes place at a temperature of over 570°C