Answer:
Heat and mass transfer of a LiBr/water absorption heat pump system (AHP) was experimentally studied during working a heating-up mode. The examination was performed for a single spiral tube, which was simulated for heat transfer tubes in an absorber. The inside and outside of the tube were subjected to a film flow of the absorption liquid and exposed to the atmosphere, respectively. The maximum temperature of the absorption liquid was observed not at the entrance but in the region a little downward from the entrance in the tube. The steam absorption rate and/or heat generation rate in the liquid film are not constant along the tube. Hence the average convective heat transfer coefficient between the liquid film flowing down and the inside wall of the tube was determined based on a logarithmic mean temperature difference between the tube surface temperature and the film temperature at the maximum temperature location and the bottom. The film heat and mass transfer coefficients rose with increasing Reynolds number of the liquid film stream.
Answer: The correct answer is A. 11.5 atm. The temperature is held constant at 293 K, therefore, we can use Boyle's Law to determine the initial pressure. Boyle's Law states that there is an inverse relationship between pressure and volume of gases. Therefore, as volume increases, the pressure will decrease and vice versa.
Further Explanation:
Boyle's Law can be mathematically expressed as:

In this problem, we are given the values:
P(initial) = ?
V(initial) = 80 L
P (final) = 0.46 atm
V (final) = 2000 L
Plugging in these values into the equation:

The initial pressure was 11.5 atm. Since the volume increased or expanded, the space where the gas particles move is bigger, so the frequency of collisions with the wall of the container and with other particles are effectively decreased. This, therefore, decreases the pressure from 11.5 to 0.46 atm.
Learn More
- Learn about Charles' Law brainly.com/question/1421697
- Learn about Ideal Gas Law brainly.com/question/6534668
- Learn about Gay - Lusaac's Law brainly.com/question/1358307
Keywords: gas, Boyle's Law, Ideal Gas Law
It's because of the gravitational forces
The fact that the student used different amount of water (another independent variable) is wrong with the experimental design
WHAT ARE THE COMPONENTS OF AN EXPERIMENT?
- An experiment aims at solving a scientific problem or answering a scientific question. An experiment should contain a variable being changed called INDEPENDENT VARIABLE and a variable being measured called DEPENDENT VARIABLE.
- In an ideal experiment, only one independent variable should be used while every other variable should be kept constant. This is done so as not to affect the result of the experiment.
In the experiment conducted by the student in this question, two independent variables were used i.e. the different amount of water and the different temperatures. This is what is wrong about the experimental design.
- In a nutshell, the fact that two independent variables were used by the student is what is wrong about the experimental design.
Learn more at: brainly.com/question/967776
Answer:
i'd say the second choice.
Explanation:
the rise in temperature causes the particles to vibrate causing motion. they collide thus resulting to the weakening of the particles.
hope it is of use to you.