Answer:
-0.4454 Joules
Explanation:
m = Mass of block = 2 kg
h = Height of extension = 17 cm = x
g = Acceleration due to gravity = 9.81 m/s²
Potential energy of the spring
The kinetic energy of the spring
In this system as the potential and kinetic energy is conserved from work energy equivalence we get
The work done by friction is -0.4454 Joules
Answer:
In Step 5, you will calculate H+/OH– ratios for more extreme pH solutions. Find the concentration of H+ ions to OH– ions listed in Table B of your Student Guide for a solution at a pH = 2. Then divide the H+ concentration by the OH– concentration. Record these concentrations and ratio in Table C.
What is the concentration of H+ ions at a pH = 2?
0.01 mol/L
What is the concentration of OH– ions at a pH = 2?
0.000000000001 mol/L
What is the ratio of H+ ions to OH– ions at a pH = 2?
10,000,000,000 : 1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I LITERALLY spent 40 MINUTES trying to figure out this question, so please, use my VERY CORRECT answers!
I hope this helps!
Answer:
the charged particle is electron..
Explanation:
electrons are the only charged particles which can be transferred by rubbing certain materials which generate electrostatic force ...
Explanation:
In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. It is the macroscopic energy associated with a system. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces, then the mechanical energy is constant. If an object moves in the opposite direction of a conservative net force, the potential energy will increase; and if the speed (not the velocity) of the object changes, the kinetic energy of the object also changes. In all real systems, however, nonconservative forces, such as frictional forces, will be present, but if they are of negligible magnitude, the mechanical energy changes little and its conservation is a useful approximation. In elastic collisions, the kinetic energy is conserved, but in inelastic collisions some mechanical energy may be converted into thermal energy. The equivalence between lost mechanical energy (dissipation) and an increase in temperature was discovered by James Prescott Joule.
Answer:Yes, water indeed expands when it changes form from liquid to solid. And this is because water has a property called “hydrogen bonds”, and these bonds occur between each water molecule. But when water is in a liquid form these hydrogen bonds break more easily and occur less frequently. When the temperature drops the kinetic energy also drops, which in turn makes hydrogen bonds form more frequently. So the water molecules form a lattice, which is less dense than regular liquid water.
Explanation: