Answer:
Increasing its charge
Increasing the field strength
Explanation:
For a charged particle moving in a circular path in a uniform magnetic field, the centripetal force is provided by the magnetic force, so we can write:

where
q is the charge
v is the velocity
B is the magnetic field
m is the mass
r is the radius of the orbit
The period of the motion is

Re-arranging for r

And substituting into the previous equation

Solving for T,

So we see that the period is:
- proportional to the charge and the magnetic field
- inversely proportional to the mass and the square of the speed
So the following will increase the period of the particle's motion:
Increasing its charge
Increasing the field strength
Answer:
a) V = 195.70 m/s
b) f=3.02 × 10⁻⁴ Hz
c) T = 3311.25 seconds
Explanation:
Given:
Wavelength, λ = 646 Km = 646000 m
Distance traveled = 3410 Km = 3410000 m
Time = 4.84 h = 4.84 × 3600 s = 17424 seconds
a) The speed (V) of the wave is given as
V = distance / time
V = 3410000 m/ 17424 seconds
or
V = 195.70 m/s
b) The frequency (f) of the wave is given as:
f = V / λ
f= 195.70 / 646000
f=3.02 × 10⁻⁴ Hz
c) The time period (T) is given as:
T = 1/ f
T = 1/ (3.02 × 10⁻⁴) Hz
T = 3311.25 seconds
Answer:
The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy.
i hope this helps.
Explanation:
According to Newton`s law. Force exerted by car,

After adding an additional 400 kg of mass, the force will be same therefore the acceleration

Thus, the acceleration after adding the masses is 1.47 \ m/s^2.
Answer:
Mass and time are not vector quantities .
Explanation:
All the physical quantities can be classified into two major categories that is :
Scalar quantities
- They are those that describes only the magnitude and they are regarded as incomplete quantities as they don't provide complete information.
For example : Speed ,Mass, Time etc
Vector quantities
- They are complete quantities that can be described in magnitude as well as direction .
For example : Velocity ,gravity ,Acceleration etc