Answer:
La fuerza de interacción entre dichas partículas es
.
Explanation:
Asumamos que las dos cargas son puntuales, puesto que la fuerza de interacción es netamente electrostática, es determinada por la Ley de Coulomb:
(1)
Donde:
- Constante electrostática, medida en newton-metros cuadrados por Coulomb cuadrado.
,
- Carga eléctrica, medida en Coulomb.
- Distancia entre las partículas, medida en metros.
Si sabemos que
,
y
, entonces la fuerza de interacción entre ambas partículas es:


La fuerza de interacción entre dichas partículas es
.
Answer:
a law stating that like charges repel and opposite charges attract, with a force proportional to the product of the charges and inversely proportional to the square of the distance between them.
Answer:
3m/s
Explanation:
Time=5s
Distance =15m
Speed=distance/time
Putting the values
Speed=15m/5s
Speed=3m/s is the answer
Hope it will help you. :)
The correct option is b. The one with the lowest mass.
An object's kinetic energy is determined by
k=1/2mv^2
where
m is the object's mass.
v is the object's speed.
The three missiles in this puzzle have varying masses but the same beginning kinetic energy.
The three projectiles will all have the same kinetic energy when they hit the ground because mechanical energy is conserved, assuming there is no air resistance (because the potential energy that they have lost is the same, since they have been launched from the same height, and they reach the same final altitude, the ground).
hence,
K1=k2=k3
To know more about kinetic energy refer to brainly.com/question/14604194
#SPJ4
Answer:
ms⁻¹
Explanation:
Consider the motion of the bullet-block combination after collision
= mass of the bullet = 0.0382 kg
= mass of wooden block = 3.78 kg
= velocity of the bullet-block combination after collision
= spring constant of the spring = 833 N m⁻¹
= Amplitude of oscillation = 0.190 m
Using conservation of energy
Kinetic energy of bullet-block combination after collision = Spring potential energy gained due to compression of spring


ms⁻¹
= initial velocity of the bullet before striking the block
Using conservation of momentum for the collision between bullet and block


ms⁻¹