Answer: 
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced chemical equation for reaction of potassium superoxide with carbon dioxide to produce oxygen and potassium carbonate will be:

There are ALOT because they would always come in and out and they will burst which creates more so techneclly there are infinate
Answer:
3.15 × 10⁻⁶ mol H₂/L.s
1.05 × 10⁻⁶ mol N₂/L.s
Explanation:
Step 1: Write the balanced equation
2 NH₃ ⇒ 3 H₂ + N₂
Step 2: Calculate the rate of production of H₂
The molar ratio of NH₃ to H₂ is 2:3. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of H₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 3 mol H₂/2 mol NH₃ = 3.15 × 10⁻⁶ mol H₂/L.s
Step 3: Calculate the rate of production of N₂
The molar ratio of NH₃ to N₂ is 2:1. Given the rate of decomposition of NH₃ is 2.10 × 10⁻⁶ mol/L.s, the rate of production of N₂ is:
2.10 × 10⁻⁶ mol NH₃/L.s × 1 mol N₂/2 mol NH₃ = 1.05 × 10⁻⁶ mol N₂/L.s
Answer:
May I assume "ethanol acid is just ethanol (it has one slightly acidic H atom). If so, the molar mass is 46.02 g/mole.
Explanation:
We have 30 cm^3 [30 ml] of 1.0 M (1 mole/liter) [1 dm³ = 1 liter].
That is 1 mole/liter. 30 ml would contain (0.030 liter)*(1 mole/1 liter) = 0.03 moles.
Answer:
Average atomic mass = 79.9034 amu
Explanation:
The formula for the calculation of the average atomic mass is:
Given that:
<u>For first isotope:
</u>
% = 50.69 %
Mass = 78.9183 amu
<u>For second isotope:
</u>
% = 49.31 %
Mass = 80.9163 amu
Thus,
<u>Average atomic mass = 79.9034 amu</u>