Answer:
4.8 g H₂O
Explanation:
To find the mass of water, you need to (1) convert grams B₂H₆ to moles B₂H₆ (via molar mass from periodic table), then (2) convert moles B₂H₆ to moles H₂O (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles H₂O to grams H₂O (via molar mass from periodic table).
It is important to arrange the ratios/conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs because the given value (3.7 grams) has 2 sig figs.
Molar Mass (B₂H₆): 2(10.811 g/mol) + 6(1.008 g/mol)
Molar Mass (B₂H₆): 27.67 g/mol
1 B₂H₆ + 3 O₂ ---> 2 HBO₂ + 2 H₂O
^ ^
Molar Mass (H₂O): 15.998 g/mol + 2(1.008 g/mol)
Molar Mass (H₂O): 18.014 g/mol
3.7 g B₂H₆ 1 mole 2 moles H₂O 18.014 g
---------------- x --------------- x ----------------------- x ----------------- = 4.8 g H₂O
27.67 g 1 mole B₂H₆ 1 mole
The
combustion of heptane (C7H16) in oxygen spontaneously occurs. The products of
the reaction are carbon dioxide and water vapor. The balanced chemical equation
is 7H16 + 11O2 → 7CO2 + 8H2O H
= –2877.5 kJ.
The atomic radius of main group elements generally increases down a group because as there are more electrons they are farther away from the nucleus and the electrons closer to the nucleus shield the outer electrons from the protons for attraction.
Answer:
See explanation and image attached
Explanation:
The Gilman reagent is a lithium and copper (diorganocopper) reagent with a general formula R2CuLi. R is an alkyl or aryl group.
They are useful in the synthesis of alkanes because they react with organic halides to replace the halide group with an R group.
In this particular instance, we intend to synthesize propylcyclohexane. The structure of the lithium diorganocopper (Gilman) reagent required is shown in the image attached to this answer.
Answer:
a formula giving the proportions of the elements present in a compound but not the actual numbers or arrangement of atoms.
Explanation: