<em>c</em> = 1.14 mol/L; <em>b</em> = 1.03 mol/kg
<em>Molar concentration
</em>
Assume you have 1 L solution.
Mass of solution = 1000 mL solution × (1.19 g solution/1 mL solution)
= 1190 g solution
Mass of NaHCO3 = 1190 g solution × (7.06 g NaHCO3/100 g solution)
= 84.01 g NaHCO3
Moles NaHCO3 = 84.01 g NaHCO3 × (1 mol NaHCO3/74.01 g NaHCO3)
= 1.14 mol NaHCO3
<em>c</em> = 1.14 mol/1 L = 1.14 mol/L
<em>Molal concentration</em>
Mass of water = 1190 g – 84.01 g = 1106 g = 1.106 kg
<em>b</em> = 1.14 mol/1.106 kg = 1.03 mol/kg
Heat
gained in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
When two objects are in contact,
it should be that the heat lost is equal to what is gained by the other. From
this, we can calculate things. We do as follows:
<span>Heat gained =
Heat lost</span>
mC(T2-T1) = - mC(T2-T1)
C(liquid water) = 4.18 J/gC
C(ice) = 2.11 J/gC
</span><span>(354 mL)(1.0 g/mL)(4.18 J/gC)(26 C - 6 C) = m(2.11 J/gC)(6 - 0C) </span><span>
m = 2337.63 g of ice
</span>
If the reaction is represented by:
PCl₃ + Cl₂ <-> PCl₅ (exothermic)
the mole fraction of chlorine in the equilibrium mixture will change according to the following:
Decrease the volume: decrease
Increase the temperature: increase
Increase the volume: increase
Decrease the temperature: decrease