If you take the positive horizontal direction to be to the right (the same direction as <em>F</em>₂), then by Newton's second law, the block has
• a net horizontal force of
∑ <em>F</em> = <em>F</em>₁ cos(-50°) + <em>F</em>₂ - <em>f</em> = <em>m a</em>
• a net vertical force of
∑ <em>F</em> = <em>F</em>₁ sin(-50°) + <em>n</em> - <em>m g</em> = 0
where
• <em>f</em> = <em>µ</em> <em>n</em> = magnitude of friction
• <em>µ</em> = coefficient of kinetic friction
• <em>n</em> = magnitude of the normal force
• <em>m</em> = 20 kg
• <em>a</em> = acceleration of the block
Solve for <em>n</em> :
<em>n</em> = <em>m g</em> + <em>F</em>₁ sin(50°)
<em>n</em> = (20 kg) (9.80 m/s²) + (50 N) sin(50°)
<em>n</em> ≈ 234.302 N
If the block accelerates uniformly <em>from rest</em> with acceleration <em>a</em>, then this acceleration is equal to its average, given by
<em>a</em> = ∆<em>v</em> / ∆<em>t</em> = (9 m/s - 0) / (3 s) = 3 m/s²
Solve for <em>f</em> :
<em>f</em> = <em>F</em>₁ cos(50°) + <em>F</em>₂ - <em>m a</em>
<em>f</em> = (50 N) cos(50°) + 80 N - (20 kg) (3 m/s²)
<em>f</em> ≈ 52.1394 N
Solve for <em>µ</em> :
<em>µ</em> = <em>f</em> / <em>n</em>
<em>µ</em> ≈ (52.1394 N) / (234.302 N)
<em>µ</em> ≈ 0.22253 ≈ 0.22