Decreasing the distance between two objects having a considerable mass would increase the attraction on gravitation. The reverse is true that if you separate or inrease the objects distance would substantially decrease their gravitational attraction. Most object in our planet is held by its gravitational force towards it's center.
Answer:N=322.53 rpm
Explanation:
Given
Linear velocity (v)=1.25 m/s
Position from center is 3.7 cm
we know



and 


N=322.53 rpm
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2
Answer:
diameter = 21.81 ft
Explanation:
The gravitational force equation is:

Where:
- F => Gravitational force or force of attraction between two masses
- M => Mass of asteroid 1
- m => Mass of asteroid 2
- R => Distance between asteroids 1 and 2 (from center of gravity)
We also know that the asteroids are identical so their masses are identical:
Since R is the distance between centers of the two asteroids and their diameters are identical (see attachment), we can conclude that:
We don´t know the mass of the asteroids but we know they are composed of pure iron, so we can relate their masses to their density:
This is going to be helpful because the volume of a sphere is:
And know we can write our original force of gravity equation in terms of the radius of the asteroids:
Now let´s plug in the values we know:
mutual gravitational attraction force
gravitational constant
Solve for r and multiply by 2 because 2r = diameter
Result is d = 21.81 Feet
Answer:
A fire hose must be able to shoot water to the top of a building 35.0 m tall ... Water enters this hose at a steady rate of 0.500 m3/s and shoots out of a round nozzle. ... I know that Flow rate=0.500 m3/s=A*V. I know the pressure needed to ... The first equation has no potential while the second has no kinetic.
Explanation: