Answer: Option C - Radical
Explanation:
A radical is a chemical specie carrying a lone electron. In the halogenation of alkanes: take Methane CH4 as the alkane, and Chlorine Cl as the halogen.
The step by step halogenation process is as follows:
CH4 + Cl2 --> CH3• + HCl + Cl•
CH3• + Cl2 --> CH3Cl + HCl
CH3Cl + Cl2 --> CH2Cl2 + HCl + Cl•
CH2Cl2 + Cl2 --> CHCl3 + HCl
CHCl3 + Cl2 --> CCl4 + HCl + Cl•
Chlorine molecule attack methane knocking off an hydrogen atom from it and forming a methyl radical (CH3•), that is subsequently attack by another chlorine molecule. This cycle repeats itself, until no hydrogen atom is available for substitution by the highly reactive chlorine radical.
Note: no cation or anion is formed in the halogenation process
Hydrogen bonds are strong intermolecular forces created when a hydrogen atom bonded to an electronegative atom approaches a nearby electronegative atom. Greater electronegativity of the hydrogen bond acceptor will lead to an increase in hydrogen-bond strength.
I hope this helps
Answer:
it gains 2 electrons
Explanation:
atoms want to be more stable, for oxygen it's number is 8, 2 less than the stable ring of 10. and hydrogen has a single electron, 1 less than the stable ring of 2. so oxygen takes 2 electrons 2 make it stable and hydrogen becomes attatched to the oxygen atom to form a covalent bond
If 200cm^3 takes 10secs then 120 will take 6secs. i hope u understood