1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mars2501 [29]
2 years ago
10

A manufacturer has been asked to produce 100 customized metal discs with a particular pattern engraved on them. Which production

process should be selected?
Engineering
2 answers:
topjm [15]2 years ago
8 0
I’m just here for points because I have test and I need them lol
saul85 [17]2 years ago
3 0

Answer:

Job Shop production

Explanation:

You might be interested in
The end of a large tubular workpart is to be faced on a NC vertical boring mill. The part has an outside diameter of 38.0 in and
nata0808 [166]

Answer:

(a) the cutting time to complete the facing operation = 11.667mins

b) the cutting speeds and metal removal rates at the beginning= 12.89in³/min and end of the cut. = 8.143in³/min

Explanation:

check attached files below for answer.

5 0
3 years ago
A beam has a rectangular cross section that is 5 inches wide and 1.5 inches tall. The supports are 60 inches apart and with a 12
nydimaria [60]

Answer:

The value of Modulus of elasticity E = 85.33 × 10^{6} \frac{lbm}{in^{2} }

Beam deflection is = 0.15 in

Explanation:

Given data

width = 5 in

Length = 60 in

Mass of the person = 125 lb

Load = 125 × 32 = 4000\frac{ft lbm}{s^{2} }

We know that moment of inertia is given as

I = \frac{bt^{3} }{12}

I = \frac{5 (1.5^{3} )}{12}

I = 1.40625 in^{4}

Deflection = 0.15 in

We know that deflection of the beam in this case is given as

Δ = \frac{PL^{3} }{48EI}

0.15 = \frac{4000(60)^{3} }{48 E (1.40625)}

E = 85.33 × 10^{6} \frac{lbm}{in^{2} }

This is the value of Modulus of elasticity.

Beam deflection is = 0.15 in

6 0
3 years ago
Water flows at a uniform velocity of 3 m/s into a nozzle that reduces the diameter from 10 cm to 2 cm. Calculate the water’s vel
katrin2010 [14]

Answer:

See the pictures attached

Explanation:

4 0
3 years ago
Spring-loaded rack guide yokes are made of ______ and have a spring that pushes on the back side of the rack to help reduce the
Kobotan [32]

Answer:

metal

Explanation:

A yoke assembly are use in an assembly of a rack and pinion steering gear for a vehicle. The spring loaded yokes guided with a rack are made up of metals. It consists of a spring made of steel which pushes the back side of the rack to reduce the play that occurs between the pinion and the rack and still allow the relative motion.

6 0
3 years ago
What are the de Broglie frequencies and wavelengths of (a) an electron accelerated to 50 eV (b) a proton accelerated to 100 eV
DaniilM [7]

Answer:

(a) De-Brogie wavelength is 0.173 nm and frequency is 2.42 x 10^16 Hz

(b) De-Brogie wavelength is 2.875 pm and frequency is 4.8 x 10^16 Hz

Explanation:

(a)

First, we need to find velocity of electron. Since, it is accelerated by electric potential. Therefore,

K.E of electron = (1/2)mv² = (50 eV)(1.6 x 10^-19 J/1 eV)

(1/2)mv² = 8 x 10^(-18) J

Mass of electron = m = 9.1 x 10^(-31) kg

Therefore,

v² = [8 x 10^(-18) J](2)/(9.1 x 10^(-31) kg)

v = √1.75 x 10^13

v = 4.2 x 10^6 m/s

Now, the de Broglie's wavelength is given as:

λ = h/mv

where,

h = Plank's Constant = 6.626 x 10^(-34) kg.m²/s

Therefore,

λ = (6.626 x 10^(-34) kg.m²/s)/(9.1 x 10^(-31) kg)(4.2 x 10^6 m/s)

<u>λ = 0.173 x 10^(-9) m = 0.173 nm</u>

The frequency is given as:

Frequency = f = v/λ

f = (4.2 x 10^6 m/s)/(0.173 x 10^(-9) m)

<u>f = 2.42 x 10^16 Hz</u>

(b)

First, we need to find velocity of proton. Since, it is accelerated by electric potential. Therefore,

K.E of proton = (1/2)mv² = (100 eV)(1.6 x 10^-19 J/1 eV)

(1/2)mv² = 1.6 x 10^(-17) J

Mass of proton = m = 1.67 x 10^(-27) kg

Therefore,

v² = [1.6 x 10^(-17) J](2)/(1.67 x 10^(-27) kg)

v = √1.916 x 10^10

v = 1.38 x 10^5 m/s

Now, the de Broglie's wavelength is given as:

λ = h/mv

where,

h = Plank's Constant = 6.626 x 10^(-34) kg.m²/s

Therefore,

λ = (6.626 x 10^(-34) kg.m²/s)/(1.67 x 10^(-27) kg)(1.38 x 10^5 m/s)

<u>λ = 2.875 x 10^(-12) m = 2.875 pm</u>

The frequency is given as:

Frequency = f = v/λ

f = (1.38 x 10^5 m/s)/(2.875 x 10^(-12) m)

<u>f = 4.8 x 10^16 Hz</u>

6 0
3 years ago
Other questions:
  • A 3.52 kg steel ball is tossed upward from a height of 6.93 meters above the floor with a vertical velocity of 2.99 m/s. What is
    14·1 answer
  • What is the correct statement regarding the stress over the section of a shaft in torsion?
    13·1 answer
  • A refrigerator has a cooling load of 50 kW. It has a COP of 2. It is run by a heat engine which consumes 50 kW of heat to supply
    12·1 answer
  • Suppose you have a Y-connected balanced three-phase load which consumes 200 kW with pf of 0.707 lagging. The line-to-line voltag
    14·1 answer
  • Ring rolling is a deformation process in which a thick-walled ring of smaller diameter is rolled into a thin-walled ring of larg
    11·1 answer
  • What are wheel cylinders used for?
    6·1 answer
  • Describe in your own words the three strengthening mechanisms
    7·1 answer
  • What is the definition of insert view and why do we use it
    10·1 answer
  • Which of the following would be addressed by an employer completing an EAP template?
    11·1 answer
  • The project's criteria.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!