1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mars2501 [29]
2 years ago
10

A manufacturer has been asked to produce 100 customized metal discs with a particular pattern engraved on them. Which production

process should be selected?
Engineering
2 answers:
topjm [15]2 years ago
8 0
I’m just here for points because I have test and I need them lol
saul85 [17]2 years ago
3 0

Answer:

Job Shop production

Explanation:

You might be interested in
At a certain location, wind is blowing steadily at 7 m/s. Determine the mechanical energy of air per unit mass and the power gen
Kaylis [27]

Answer:

Explanation:

From the information given;

The velocity of the wind blow V = 7 m/s

The diameter of the blades  (d) = 80 m

Percentage of the overall efficiency \eta_{overall} = 30\%

The density of air \rho = 1.25 kg/km^3

Then, we can use the concept of the kinetic energy of the wind blowing to estimate the mechanic energy of air per unit mass by using the formula:

e_{mechanic} = \dfrac{mV^2}{2}

here;

m = \rho AV

= 1.25 \times \dfrac{\pi}{4}(80)^2 \times 7

= 43982.29 kg/s

∴

W = e_{mechanic} = \dfrac{mV^2}{2}

= \dfrac{43982.29 \times 7^2}{2}

= 1077566.105 \ W

\mathbf{ =1077.566 \ kW}

The actual electric power is:

W_{electric} = \eta_{overall} \times W

W_{electric} = 0.3 \times 1077.566

\mathbf{W_{electric} =323.26 \ kW}

8 0
2 years ago
Calculate the availability of a system where the mean time between failures is 900 hours and the mean time to repair is 100 hour
Debora [2.8K]

Answer:

The availability of system will be 0.9

Explanation:

We have given mean time of failure = 900 hours

Mean time [to repair = 100 hour

We have to find availability of system

Availability of system is given by  \frac{mean\time\ of\ failure}{mean\ time\ of\ failure+mean\ time\ to\ repair}

So availability of system =\frac{900}{900+100}=\frac{900}{1000}=0.9

So the availability of system will be 0.9

7 0
3 years ago
A heat pump designer claims to have an air-source heat pump whose coefficient of performance is 1.8 when heating a building whos
Anit [1.1K]

Answer:

The claim is valid.

Explanation:

Let assume that heat pump is reversible. The coefficient of performance for the heat pump is:

COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}

COP_{HP} = \frac{300\,K}{300\,K-260\,K}

COP_{HP} = 7.5

The claim is valid as real heat pumps have lower coefficients of performance.

3 0
3 years ago
How should you move your board through the planer? (Pick two choices.)
iragen [17]

Answer:

I would say do it at an even pace

Explanation:

Doing it a slow pace takes time quickly will probably not to good gor you and doing it at an irregular pace is just way to fast

4 0
3 years ago
A counter-flow double pipe heat exchanger is heat heat water from 20 degrees Celsius to 80 degrees Celsius at the rate of 1.2 kg
lakkis [162]

Answer:

L=107.6m

Explanation:

Cold water in: m_{c}=1.2kg/s, C_{c}=4.18kJ/kg\°C, T_{c,in}=20\°C, T_{c,out}=80\°C

Hot water in: m_{h}=2kg/s, C_{h}=4.18kJ/kg\°C, T_{h,in}=160\°C, T_{h,out}=?\°C

D=1.5cm=0.015m, U=649W/m^{2}K, LMTD=?\°C, A_{s}=?m^{2},L=?m

Step 1: Determine the rate of heat transfer in the heat exchanger

Q=m_{c}C_{c}(T_{c,out}-T_{c,in})

Q=1.2*4.18*(80-20)

Q=1.2*4.18*(80-20)

Q=300.96kW

Step 2: Determine outlet temperature of hot water

Q=m_{h}C_{h}(T_{h,in}-T_{h,out})

300.96=2*4.18*(160-T_{h,out})

T_{h,out}=124\°C

Step 3: Determine the Logarithmic Mean Temperature Difference (LMTD)

dT_{1}=T_{h,in}-T_{c,out}

dT_{1}=160-80

dT_{1}=80\°C

dT_{2}=T_{h,out}-T_{c,in}

dT_{2}=124-20

dT_{2}=104\°C

LMTD = \frac{dT_{2}-dT_{1}}{ln(\frac{dT_{2}}{dT_{1}})}

LMTD = \frac{104-80}{ln(\frac{104}{80})}

LMTD = \frac{24}{ln(1.3)}

LMTD = 91.48\°C

Step 4: Determine required surface area of heat exchanger

Q=UA_{s}LMTD

300.96*10^{3}=649*A_{s}*91.48

A_{s}=5.07m^{2}

Step 5: Determine length of heat exchanger

A_{s}=piDL

5.07=pi*0.015*L

L=107.57m

7 0
2 years ago
Other questions:
  • To unload a bound stack of plywood from a truck, the driver first tilts the bed of the truck and then accelerates from rest. Kno
    7·1 answer
  • Define the difference between elastic and plastic deformation in terms of the effect on the crystal lattice structure.
    5·1 answer
  • An n- channel enhancement- mode MOSFET with 50 nm thick HfO2 high- k gate dielectric (Pr = 25) has a flat band voltage of 0.5 V,
    5·1 answer
  • Electrical pressure or “force”<br><br> A) current<br> B) resistance <br> C) voltage
    6·1 answer
  • Pehdhdjdjdodnjdndjdjdjfjdk
    11·2 answers
  • A partnership between a gaming company and moviemakers might happen in what two ways?
    6·1 answer
  • Help me i need this bad :)
    14·1 answer
  • Report of invertor to convert 12 volt to 220 volt.
    6·1 answer
  • 12. Never spray brakes with a high-pressure stream of water or air because it could blow asbestos fibers into the air.
    8·1 answer
  • Their game off badminton is always on Tuesday
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!