Answer:
Frequency = 
Wavenumber = 
Energy = 
Energy = 1.4579 eV
Energy = 
Explanation:
As we are given the wavelength = 850 nm
conversion used : 
So, wavelength is 
The relation between frequency and wavelength is shown below as:

Where, c is the speed of light having value = 
So, Frequency is:


Wavenumber is the reciprocal of wavelength.
So,


Also,

where, h is Plank's constant having value as 
So,


Also,

So,


Also,

So,


Answer:
i) σ1 = 133.5 MPa
σ2 = -2427 MPa
ii) 78.89 MPa
Explanation:
Given data:
ε1 = 0.0020 and ε2 = –0.0010
E = 71 GPa
v = 0.35
<u>i) Determine the biaxial stresses σ1 and σ2 using the relations below</u>
ε1 = σ1 / E - v (σ2 / E) -----( 1 )
ε2 = σ2 / E - v (σ1 / E) -------( 2 )
resolving equations 1 and 2
σ1 = E / 1 - v^2 { ε1 + vε2 } ---- ( 3 )
σ2 = E / 1 - v^2 { ε2 + vε1 } ----- ( 4 )
input the given data into equation 3 and equation 4
σ1 = 133.5 MPa
σ2 = -2427 MPa
<u>ii) Calculate the value of the maximum shear stress ( Zmax )</u>
Zmax = ( σ1 - σ2 ) / 2
= 133.5 - ( - 2427 ) / 2
= 78.89 MPa
Answer:
So the exit velocity of water is 4.5 m/s
Explanation:
Given that
Water entering pressure = 1.5 MPa
Temperature = 150°C
Velocity = 4.5 m/s
From first law of thermodynamics for open system

Here given that valve is adiabatic so Q= 0
In valve W= 0
Wen also also know that throttling process is an constant enthaply process so



So from above equation we can say that

So the exit velocity of water is 4.5 m/s
Answer:
Prevent contact: The safeguard must prevent hands, arms, and any other part of a worker's body from making contact with dangerous moving parts. A good safeguarding system eliminates the possibility of the operator or another worker placing parts of their bodies near hazardous moving parts.