1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
3 years ago
11

In multi-grade oil what is W means?

Engineering
1 answer:
irga5000 [103]3 years ago
4 0

Answer:

winter viscosity grades

Explanation:

The “W”/winter viscosity grades describe the oil's viscosity under cold temperature engine starting conditions. There's a Low Temperature Cranking Viscosity which sets a viscosity requirement at various low temperatures to ensure that the oil isn't too thick so that the starter motor can't crank the engine over.

You might be interested in
For a bronze alloy, the stress at which plastic deformation begins is 266 MPa and the modulus of elasticity is105 GPa.
pentagon [3]

Answer:

88750 N

Explanation:

given data:

plastic deformation σy=266 MPa=266*10^6 N/m^2

cross-sectional area Ao=333 mm^2=333*10^-6 m^2

solution:

To determine the maximum load that can be applied without

plastic deformation (Fy).

Fy=σy*Ao

   =88750 N

7 0
3 years ago
A 1000 W iron utilizes a resistance wire which is 20 inches long and has a diameter of 0.08 inches. Determine the rate of heat g
SSSSS [86.1K]

Answer:

The rate of heat generation in the wire per unit volume is 5.79×10^7 Btu/hrft^3

Heat flux is 9.67×10^7 Btu/hrft^2

Explanation:

Rate of heat generation = 1000 W = 1000/0.29307 = 3412.15 Btu/hr

Area (A) = πD^2/4

Diameter (D) = 0.08 inches = 0.08 in × 3.2808 ft/39.37 in = 0.0067 ft

A = 3.142×0.0067^2/4 = 3.53×10^-5 ft^2

Volume (V) = A × Length

L = 20 inches = 20 in × 3.2808 ft/39.37 in = 1.67 ft

V = 3.53×10^-5 × 1.67 = 5.8951×10^-5 ft^3

Rate of heat generation in the wire per unit volume = 3412.15 Btu/hr ÷ 5.8951×10^-5 ft^3 = 5.79×10^7 Btu/hrft^3

Heat flux = 3412.15 Btu/hr ÷ 3.53×10^-5 ft^2 = 9.67×10^7 Btu/hrft^2

3 0
3 years ago
As the junior engineer at the Mesabi Range Hydraulic Engineering Company located in Ely, Minnesota, you have been tasked with de
katen-ka-za [31]

yes it will

Explanation:

5 0
3 years ago
Water vapor at 10bar, 360°C enters a turbine operatingat steady state with a volumetric flow rate of 0.8m3/s and expandsadiabati
Artyom0805 [142]

Answer:

A) W' = 178.568 KW

B) ΔS = 2.6367 KW/k

C) η = 0.3

Explanation:

We are given;

Temperature at state 1;T1 = 360 °C

Temperature at state 2;T2 = 160 °C

Pressure at state 1;P1 = 10 bar

Pressure at State 2;P2 = 1 bar

Volumetric flow rate;V' = 0.8 m³/s

A) From table A-6 attached and by interpolation at temperature of 360°C and Pressure of 10 bar, we have;

Specific volume;v1 = 0.287322 m³/kg

Mass flow rate of water vapour at turbine is defined by the formula;

m' = V'/v1

So; m' = 0.8/0.287322

m' = 2.784 kg/s

Now, From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific enthalpy;h1 = 3179.46 KJ/kg

Now, From table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific enthalpy;h2 = 3115.32 KJ/kg

Now, since stray heat transfer is neglected at turbine, we have;

-W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2 - h1)

Plugging in relevant values, the work of the turbine is;

W' = -2.784(3115.32 - 3179.46)

W' = 178.568 KW

B) Still From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific entropy: s1 = 7.3357 KJ/Kg.k

Still from table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific entropy; s2 = 8.2828 KJ/kg.k

The amount of entropy produced is defined by;

ΔS = m'(s2 - s1)

ΔS = 2.784(8.2828 - 7.3357)

ΔS = 2.6367 KW/k

C) Still from table A-6 attached and by interpolation at state 2 with s2 = s2s = 8.2828 KJ/kg.k and Pressure of 1 bar, we have;

h2s = 2966.14 KJ/Kg

Energy equation for turbine at ideal process is defined as;

Q' - W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Again, Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2s - h1)

W' = -2.784(2966.14 - 3179.46)

W' = 593.88 KW

the isentropic turbine efficiency is defined as;

η = W_actual/W_ideal

η = 178.568/593.88 = 0.3

8 0
3 years ago
Print the two strings, firstString and secondString, in alphabetical order. Assume the strings are lowercase. End with newline.
CaHeK987 [17]

Hai!

Please name what kind of Script your Using then I would love to help.

Java

C

C#

C++

Lua

JavaScript

HTML

Python

5 0
2 years ago
Other questions:
  • Write multiple if statements:
    6·1 answer
  • Air is compressed in the compressor of a turbojet engine. Air enters the compressor at 270 K and 58 kPa and exits the compressor
    13·1 answer
  • Can i use two shunts and one meter
    11·2 answers
  • Estimate the quantity of soil to be excavated from the borrow pit​
    12·1 answer
  • A column has a 4.8 cm by 8.7 cm rectangular cross section and a height 4 mm . The column is fixed at both ends and has a lateral
    6·1 answer
  • Coal fire burning at 1100 k delivers heat energy to a reservoir at 500 k. Find maximum efficiency.
    6·1 answer
  • A worker standing on a freshly mopped floor is
    7·1 answer
  • Given the circuit at the right in which the following values are used: R1 = 20 kΩ, R2 = 12 kΩ, C = 10 µ F, and ε = 25 V. You clo
    11·1 answer
  • Select the answer that shows how the recognition of depreciation expense
    10·1 answer
  • A driver complains that his front tires are wearing
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!