1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
3 years ago
11

In multi-grade oil what is W means?

Engineering
1 answer:
irga5000 [103]3 years ago
4 0

Answer:

winter viscosity grades

Explanation:

The “W”/winter viscosity grades describe the oil's viscosity under cold temperature engine starting conditions. There's a Low Temperature Cranking Viscosity which sets a viscosity requirement at various low temperatures to ensure that the oil isn't too thick so that the starter motor can't crank the engine over.

You might be interested in
A nozzle receives an ideal gas flow with a velocity of 25 m/s, and the exit at 100 kPa, 300 K velocity is 250 m/s. Determine the
Margaret [11]

Given Information:

Inlet velocity = Vin = 25 m/s

Exit velocity = Vout = 250 m/s

Exit Temperature = Tout = 300K

Exit Pressure = Pout = 100 kPa

Required Information:

Inlet Temperature of argon = ?

Inlet Temperature of helium = ?

Inlet Temperature of nitrogen = ?

Answer:

Inlet Temperature of argon = 360K

Inlet Temperature of helium = 306K

Inlet Temperature of nitrogen = 330K

Explanation:

Recall that the energy equation is given by

$ C_p(T_{in} - T_{out}) = \frac{1}{2} \times (V_{out}^2 - V_{in}^2) $

Where Cp is the specific heat constant of the gas.

Re-arranging the equation for inlet temperature

$ T_{in}  = \frac{1}{2} \times \frac{(V_{out}^2 - V_{in}^2)}{C_p}  + T_{out}$

For Argon Gas:

The specific heat constant of argon is given by (from ideal gas properties table)

C_p = 520 \:\: J/kg.K

So, the inlet temperature of argon is

$ T_{in}  = \frac{1}{2} \times \frac{(250^2 - 25^2)}{520}  + 300$

$ T_{in}  = \frac{1}{2} \times 119  + 300$

$ T_{in}  = 360K $

For Helium Gas:

The specific heat constant of helium is given by (from ideal gas properties table)

C_p = 5193 \:\: J/kg.K

So, the inlet temperature of helium is

$ T_{in}  = \frac{1}{2} \times \frac{(250^2 - 25^2)}{5193}  + 300$

$ T_{in}  = \frac{1}{2} \times 12  + 300$

$ T_{in}  = 306K $

For Nitrogen Gas:

The specific heat constant of nitrogen is given by (from ideal gas properties table)

C_p = 1039 \:\: J/kg.K

So, the inlet temperature of nitrogen is

$ T_{in}  = \frac{1}{2} \times \frac{(250^2 - 25^2)}{1039}  + 300$

$ T_{in}  = \frac{1}{2} \times 60  + 300$

$ T_{in}  = 330K $

Note: Answers are rounded to the nearest whole numbers.

5 0
2 years ago
Which of the following is described as a way engineers can test and investigate how things should be under certain circumstances
goblinko [34]

Answer:

The option that is best described as a way engineers can test and investigate how things should be under certain circumstances is;

  • Modeling

Explanation:

Modeling is a tool an engineer can use for the physical representation of a system that will facilitate the definition, testing and analysis, communication, data generation, data verification and data validation of given concepts

Models also aid in setting specifications, supporting designs, and verification of a given system

Therefore, with modeling engineers can investigate the behavior of systems under given environmental conditions.

3 0
3 years ago
A 15-ft beam weighing 570 lb is lowered by means of two cables unwinding from overhead cranes. As the beam approaches the ground
7nadin3 [17]

Answer:

I. Tension (cable A) ≈ 6939 lbf

II. Tension (cable B) ≈ 17199 lbf

Explanation:

Let's begin by listing out the data that we were given:

mass of beam (m) = 570 lb, deceleration (cable A) = -20 ft/s², deceleration (cable B) = -2 ft/s²,

g = 32.17405 ft/s²

The tension on an object is given by the product of mass of the object by gravitational force plus/minus the product of mass by acceleration.

Mathematically represented thus:

T = mg + ma

where:

T = tension, m = mass, g = gravitational force,

a = acceleration

I. For Cable A, we have:

T = mg + ma = (570 * 32.17405) + [570 * (-20)]

T = 18339.2085 - 11400 = 6939.2085

T ≈ 6939 lbf

II. For Cable B, we have:

T = mg + ma = (570 * 32.17405) + [570 * (-2)]

T = 18339.2085 - 1140 = 17199.2085

T ≈ 17199 lbf

4 0
3 years ago
Steam enters an adiabatic turbine at 400◦C, 2 MPa pressure. The turbine has an isentropic efficiency of 0.9. The exit pressure i
pychu [463]

Answer:

Explanation:

Find attached the solution

8 0
2 years ago
HOW DO I FIX THIS SIDE BAR ITS THE FIRST TIME THIS HAPPEND (the black bar with all my things)
sineoko [7]
Click and drag it down to the bottom bro
6 0
3 years ago
Read 2 more answers
Other questions:
  • Electricity is generated in two forms namely………A. Alternating current and wave form B. Alternating current and basic current C.
    7·2 answers
  • A student is using a 12.9 ft ramp to raise an object 6 ft above the ground.
    5·1 answer
  • What is the difference between tension and compression?
    9·1 answer
  • A water tower that is 90 ft high provides water to a residential subdivision. The water main from the tower to the subdivision i
    10·1 answer
  • What is the theoretical density in g/cm3 for Lead [Pb]?
    13·1 answer
  • If you are involved in a collision and your vehicle is blocking the flow of traffic, you should
    5·1 answer
  • Acquisition of resources from an external source is called?
    15·1 answer
  • How long will it take a Honda Civic to travel 118 miles if it is travelling at an average speed of 72 mph?
    6·1 answer
  • In addition to passing an ASE certification test, automotive technicians must have __________ year(s) of on the job training or
    15·1 answer
  • (i) what assumptions about the relationship between the inputs and output are inherent in this specification? do scatter plots s
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!