1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bonufazy [111]
3 years ago
10

A large building will need several different types of workmen to install and repair pipes for water, heating,

Engineering
1 answer:
siniylev [52]3 years ago
3 0

Answer:

Plumber and pipefitters

Explanation:

You might be interested in
For a certain gas, Cp = 840.4 J/kg-K; and Cv = 651.5 J/kg-K. How fast will sound travel in this gas if it is at an adiabatic sta
Crank

Answer:

The speed of the sound for the adiabatic gas is 313 m/s

Explanation:

For adiabatic state gas, the speed of the sound c is calculated by the following expression:

c=\sqrt(\gamma*R*T)

Where R is the gas's particular constant defined in terms of Cp and Cv:

R=Cp-Cv

For particular values given:

R=840.4 \frac{J}{Kg-K}- 651.5 \frac{J}{Kg-K}

R=188.9 \frac{J}{Kg-K}

The gamma undimensional constant is also expressed as a function of Cv and Cp:

\gamma=Cp/Cv

\gamma=840.4 \frac{J}{Kg-K} / 651.5 \frac{J}{Kg-K}

\gamma=1.29

And the variable T is the temperature in Kelvin. Thus for the known temperature:

c=\sqrt(1.29*188.9 \frac{J}{Kg-K}*377 K)

c=\sqrt(91867.73 \frac{J}{Kg})

The Jules unit can expressing by:

J=N.m=\frac{Kg.m}{s^2}* m

J=\frac{Kg.m^2}{s^2}

Replacing the new units for the speed of the sound:

c=\sqrt(91867.73 \frac{Kg.m^2}{Kg.s^2})

c=\sqrt(91867.73 \frac{m^2}{s^2})

c=313 m/s

3 0
3 years ago
Read 2 more answers
An inductor has a 50.0-Ω reactance when connected to a 60.0-Hz source. The inductor is removed and then connected to a 45.0-Hz s
nignag [31]

Given:

X_{L} = 50.0 \ohm

frequency, f = 60.0 Hz

frequency, f' = 45.0 Hz

V_rms} = 85.0 V

Solution:

To calculate max current in inductor, I_{L(max):

At f = 60.0 Hz

X_{L} = 2\pi fL

50.0 = 2\pi\times 60.0\times L

L = 0.1326 H

Now, reactance X_{L} at f' = 45.0 Hz:

X'_{L} = 2\pi f'L

X'_{L} = 2\pi\times 45.0\times 0.13263 = 37.5\ohm

Now, I_{L(max) is given by:

I_{L(max) = \sqrt {\frac{2V_{rms}}{X'_{L}}}

I_{L(max) = \sqrt {\frac{2\times 85.0}{37.5}} = 2.13 A

Therefore,  max current in the inductor, I_{L(max) = 2.13 A

7 0
3 years ago
Cynthia is producing a sculpture using material introduced in the Bronze Age. What two metals is she mixing?
Airida [17]
The correct answer
would be d
Iron and carbon
hope this helps
5 0
2 years ago
The alignment readings for the front of a vehicle are shown above. Camber and toe are within specification, caster is not. Techn
dlinn [17]

Answer:

B. B only

Given Information:

1. Camber and toe are within specification

2. Caster is not within specification

Technician A says that with the current settings, the left front tire tread may wear on the inside edge.

Technician B says that with the current settings, the vehicle may pull to the left

Explanation:

Lets discuss the effects of Camber, toe and caster misalignment

Effects of Camber and Toe misalignment:

Camber is the inward or outward tilt of the fron tires and is used to distribute load across the tread. Any misalignment causes uneven loading on the tires which results in tire wear on one edge.

The most common cause of tire wear on the inside edge is due to the camber misalignment which results in premature tire wear.

Another reason is of tire wear is vehicle’s toe. A slight misalignment of the toe reduces the life of the tire.

Since it is given that camber settings and toe settings are within specification therefore, tire tread wear on the inside edge cannot happen if camber and toe are within specification.

Technician A cannot be right.

Effects of Caster misalignment:

Whenever there is a misalignment of the castor then the vehicle will not be able to go in straight line rather it will pull to either left or right side. Caster misalignment also causes heavy or light steering depending upon the positive or negative misalignment of caster.

Since it is given that caster settings are not within specification therefore, the vehicle may pull to the left due to the caster misalignment.

Technician B must be right.

4 0
3 years ago
1 UNREAD MESSAGE
myrzilka [38]

Answer:

triangular trade

Explanation:

triangular trade

7 0
2 years ago
Other questions:
  • Suppose that a wireless link layer using a CSMA-like protocol backs off 1ms on average. A packet’s link and physical layer heade
    5·1 answer
  • Which phrase best describes a safety-critical system? A. a system that faces a very high risk of failure B. a system isolated fr
    13·1 answer
  • Overview In C, a string is simply an array of characters. We have used literal strings all along – the stuff in between the quot
    11·1 answer
  • From the information generated in Prob. 6.4 (from your previous Aero HW#1), calculate the maximum rate of climb for the single-e
    13·1 answer
  • How to find magnitude of forces
    8·1 answer
  • What is a network? I'LL MARK BRAINLEST
    12·2 answers
  • In a creep test, increasing the temperature will (choose the best answer) A. increase the instantaneous initial deformation B. i
    5·1 answer
  • 1. A flywheel is suspended by resting the inside of the rim on a horizontal knife edge so that the wheel can swing in a vertical
    5·1 answer
  • 8. What are used by the project architect to depict different building systems and to show how they correlate to one anothe
    14·1 answer
  • Precast concrete curtain wall panels: Group of answer choices are typically manufactured on site and then hoisted into place. of
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!