Answer : The activation energy for the reaction is, 43.4 KJ
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at 
= rate constant at
= 
= activation energy for the reaction = ?
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get:
![\log (\frac{3K_1}{K_1})=\frac{Ea}{2.303\times 8.314J/mole.K}[\frac{1}{291K}-\frac{1}{310K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B3K_1%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B291K%7D-%5Cfrac%7B1%7D%7B310K%7D%5D)

Therefore, the activation energy for the reaction is, 43.4 KJ