Answer:
The angular acceleration is 
Explanation:
From the question we are told that
The moment of inertia is 
The net torque is 
Generally the net torque is mathematically represented as

Where
is the angular acceleration so

substituting values


Answer:
D. 4Al + 3O2 → 2Al2O3
Explanation:
Chemical reactions involves the chemical combination of two or more substances called REACTANTS to yield other substances called PRODUCTS. However, in accordance with the LAW OF CONSERVATION OF MASS, the amount of reactants must be equal to that of the products.
To accomplish this, the reaction must be BALANCED. A balanced equation is an equation in which the number of atoms of each element in the reactant side equals the number of atoms in the product side. In this reaction involving Aluminum and Oxygen to give Aluminum oxide as follows:
Al + 02 → Al2O3
A coefficient is used to balance the number of atoms on both sides of the equation as follows:
4Al + 3O2 → 2Al2O3
Answer:
The mass of the earth, 
Explanation:
It is given that,
Time taken by the moon to orbit the earth, 
Distance between moon and the earth,
We need to find the mass of the Earth using Kepler's third law of motion as :




So, the mass of the earth is
. Hence, this is the required solution.
Answer:
1. Least massive stars are the coolest and least luminous, lower right of main sequence, on HR diagram.
2. Most massive are the hottest and most luminous, upper left of main sequence on Hr Diagram.
3. The radius of stars are related to their sprectral type. having the O being the hottest upper left and M being the coolest bottom right.
Answer:
a)
Y0 = 0 m
Vy0 = 15 m/s
ay = -9.81 m/s^2
b) 7.71 m
c) 3.06 s
Explanation:
The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards
Y(0) = 0 m
Vy(0) = 15 m/s
ay = -9.81 m/s^2 (negative because it points down)
Since acceleration is constant we can use the equation for uniformly accelerated movement:
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
To find the highest point we do the first time derivative (this is the speed:
V(t) = Vy0 + a * t
We equate this to zero
0 = Vy0 + a * t
0 = 15 - 9.81 * t
15 = 9.81 * t
t = 0.654 s
At this time it will have a height of:
Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m
The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.
0 = Y0 + Vy0 * t + 1/2 * a * t^2
0 = 0 + 15 * t - 1/2 * 9.81 t^2
0 = 15 * t - 4.9 * t^2
0 = t * (15 - 4.9 * t)
t1 = 0 This is the moment it jumped into the air
0 = 15 - 4.9 * t2
15 = 4.9 * t2
t2 = 3.06 s This is the moment when it falls again.
3.06 - 0 = 3.06 s