Answer:
doughnut-shaped chamber called the tokamak. This is where the fusion reactions take place, within hot plasma containing deuterium and tritium atoms.
16 kilometers is the answer i came up with. hope this helps.
Answer:
1.503 J
Explanation:
Work done in stretching a spring = 1/2ke²
W = 1/2ke²........................... Equation 1
Where W = work done, k = spring constant, e = extension.
Given: k = 26 N/m, e = (0.22+0.12), = 0.34 m.
Substitute into equation 1
W = 1/2(26)(0.34²)
W = 13(0.1156)
W = 1.503 J.
Hence the work done to stretch it an additional 0.12 m = 1.503 J
Hi there!
The maximum deformation of the bumper will occur when the car is temporarily at rest after the collision. We can use the work-energy theorem to solve.
Initially, we only have kinetic energy:

KE = Kinetic Energy (J)
m = mass (1060 kg)
v = velocity (14.6 m/s)
Once the car is at rest and the bumper is deformed to the maximum, we only have spring-potential energy:

k = Spring Constant (1.14 × 10⁷ N/m)
x = compressed distance of bumper (? m)
Since energy is conserved:

We can simplify and solve for 'x'.

Plug in the givens and solve.
