1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Minchanka [31]
4 years ago
15

A liquid thermometer can be used to test for fevers. When body temperature increases, the liquid inside the thermometer expands

and
rises to show a higher
temperature reading. Which of the following explanations best describes the changes in thermal energy of the
particles during this specific example of heat transfer?
A. The tip of the thermometer is heated by radiation from the person's body. The particles of the thermometer tip then transfer heat
by convection through the liquid inside of it. The particles inside the liquid then convect heat causing the warmer particles to slow
down, rise, and expand.
B. The tip of the thermometer is heated by conduction from the person's body. The particles of the thermometer tip then transfer heat
by convection through the liquid inside of it. The particles inside the liquid then convect heat causing the warmer particles to slow
down, rise, and expand.
© C. The tip of the thermometer is heated by convection with the person's body. The particles of the thermometer tip then transfer heat
by conduction with the liquid inside of it. The particles inside the liquid then conduct heat causing the warmer particles to speed up,
rise, and expand
© D The tip of the thermometer is heated by conduction with the person's body. The particles of the thermometer tip then transfer heat
by conduction with the liquid inside of it. The particles inside the liquid then convect heat causing the warmer particles to speed up,
rise, and expand
Physics
1 answer:
kompoz [17]4 years ago
4 0

Answer:

A

Explanation:

dafdfsfsf

You might be interested in
Compare and contrast the energy transfer of a roller coaster to that of a pendulum
Softa [21]

When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.

<h3>Compare and contrast the energy transfer of a roller coaster to that of a pendulum:</h3><h3>What is the transfer of energy in a roller coaster?</h3>

The transfer of potential energy to kinetic energy occur when the roller coaster move along the track. As the motor pulls the cars to the top, the body has more potential energy whereas when the body comes to the bottom , it has kinetic energy in the object.

<h3>What is the energy transfer in a pendulum?</h3>

As a pendulum swings, its potential energy changes to kinetic energy and kinetic energy changes into potential energy. At the top more potential energy is present.

So we can conclude that When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.

Learn more about energy here: brainly.com/question/13881533

#SPJ1

8 0
2 years ago
When gametes combine to form a zygote, the chromosomes number of the zygote is now referred to as
Serga [27]

the answer to the complicated question is a diploid

6 0
4 years ago
Read 2 more answers
Can you tell from your experiment so far whether the tapes carry a positive charge or a negative charge? Briefly explain your an
Softa [21]

Answer:

Explanation:

Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. There are two types of electric charge: positive and negative (commonly carried by protons and electrons respectively). Like charges repel each other and unlike charges attract each other. An object with an absence of net charge is referred to as neutral. Early knowledge of how charged substances interact is now called classical electrodynamics, and is still accurate for problems that do not require consideration of quantum effects.

Electric charge is a conserved property; the net charge of an isolated system, the amount of positive charge minus the amount of negative charge, cannot change. Electric charge is carried by subatomic particles. In ordinary matter, negative charge is carried by electrons, and positive charge is carried by the protons in the nuclei of atoms. If there are more electrons than protons in a piece of matter, it will have a negative charge, if there are fewer it will have a positive charge, and if there are equal numbers it will be neutral. Charge is quantized; it comes in integer multiples of individual small units called the elementary charge, e, about 1.602×10−19 coulombs,[1] which is the smallest charge which can exist freely (particles called quarks have smaller charges, multiples of

e, but they are only found in combination, and always combine to form particles with integer charge). The proton has a charge of +e, and the electron has a charge of −e.

An electric charge has an electric field, and if the charge is moving it also generates a magnetic field. The combination of the electric and magnetic field is called the electromagnetic field, and its interaction with charges is the source of the electromagnetic force, which is one of the four fundamental forces in physics. The study of photon-mediated interactions among charged particles is called quantum electrodynamics.

8 0
3 years ago
A cord is wrapped around the rim of a solid uniform wheel 0.280m in radius and of mass 8.80kg. A steady horizontal pull of 32N t
Grace [21]

Answer:25.97 rad/s^2

Explanation:

Given

radius of wheel r=0.28 m

mass of wheel m=8.80 kg

Force F=32 N

Moment of Inertia of solid wheel I=\frac{mr^2}{2}

I=\frac{8.8\times 0.28^2}{2}

I=0.344 kg-m^2

Torque is given by

\tau =F\times r=I\times \alpha

32\times 0.28=0.344\times \alpha

\alpha =25.97 rad/s^2

Force on the axle is 32 N since there is no linear acceleration of the system

using Third law F=32 N

Torque of the axle applied to the wheel is zero because force of axle imparted at the center of axle

3 0
3 years ago
A major leaguer hits a baseball so that it leaves the bat at a speed of 31.3 m/s and at an angle of 36.7 ∘ above the horizontal.
OLEGan [10]

Answer:

A) t₁ = 0.56 s t₂ =3.26 s

B) vh₁=vh₂ = 25.1 m/s

C) v₁ = 13.2 m/s  v₂ = -13.2 m/s

D) v = 31. 3 m/s

E) 36.7º below horizontal.  

Explanation:

A) As the only acceleration of the baseball is due to gravity, as it is constant, we can apply the kinematic equations in order to get times.

First, we can get the horizontal and vertical components of the velocity, as the movements  along these directions are independent each other.

v₀ₓ = v* cos 36.7º = 31.3 m/s * cos 36.7º = 25.1 m/s

v₀y = v* sin 36.7º =  31.3 m/s * sin 36.7º = 18.7 m/s

As in the horizontal direction, movement is at constant speed, the time, at any point of the trajectory, is defined by the vertical direction.

We can apply to this direction the kinematic equation that relates the displacement, the initial velocity and time, as follows:

Δy = v₀y*t -1/2*g*t²

We can replace Δy, v₀y and g for the values given, solving a quadratic equation for t, as follows:

4.9*t²-18.7t + 9 = 0

The two solutions for  t, are just the two times at which the baseball is at a height of 9.00 m above the point at which it left the bat:

t = 1.91 sec +/- 1.35 sec.

⇒ t₁ = 0.56 sec   t₂= 3.26 sec.

B) As we have already told, in the horizontal direction (as gravity is always downward) the movement is along a straight path, at a constant speed, equal to the x component of the initial velocity.

⇒ vₓ = v₀ₓ = 25.1 m/s

C) In order to get the value of  the vertical components at the two times that we have just found, we can apply the definition of acceleration (g in this case), solving for vfy, as follows:

vf1 = v₀y - g*t₁ = 18.7 m/s - (9.8m/s²*0.56 sec) = 13.2 m/s

vf₂ = v₀y -g*t₂ = 18.7 m/s - (9.8 m/s²*3.26 sec) = -13.2 m/s

D) In order to get the magnitude of  the baseball's velocity when it returns to the level at which it left the bat, we need to know the value of the vertical component at this time.

We could do in different ways, but the easiest way is using the following kinematic equation:

vfy² - v₀y² = 2*g*Δh

If we take the upward path, we know that at the highest point, the baseball will come momentarily to an stop, so at this point, vfy = 0

We can solve for Δh, as follows:

Δh = v₀y² / (2*g) = (18.7m/s)² / 2*9.8 m/s² = 17.8 m

Now, we can use the same equation, for the downward part, knowing that after reaching to the highest point, the baseball will start to fall, starting from rest:

vfy² = 2*g*(-Δh) ⇒ vfy = -√2*g*Δh = -√348.9 = -18. 7 m/s

The horizontal component is the same horizontal component of the initial velocity:

vx = 25.1 m/s

We can get the magnitude of the baseball's velocity when it returns to the level at which it left the bat, just applying Pythagorean Theorem, as follows:

v = √(vx)² +(vfy)² = 31.3 m/s

E) The direction below horizontal of the velocity vector, is given by the tangent of the angle with the horizontal, that can be obtained as follows:

tg Ф = vfy/ vx = -18.7 / 25. 1 =- 0.745

⇒ Ф = tg⁻¹ (-0.745) = -36.7º

The minus sign tell us that the velocity vector is at a 36.7º angle below the horizontal.

5 0
3 years ago
Other questions:
  • Which statement describes characteristics of a concave lens?
    11·2 answers
  • A closed pipe and an open pipe have their first overtones identical in frequency. their lengths are in the ratio?
    5·1 answer
  • Jack stands at rest on a skateboard. The mass of Jack and the skateboard together is 75 kg. Ryan throws a 3.0 kg ball horizontal
    6·1 answer
  • Consider two objects of the same mass. If a force of 100N acts on the first for a duration of 1s and on the other for a duration
    7·2 answers
  • To lift a load of 100 kg a distance of 1 m an effort of 25 kg must be applied over an inclined plane of length 4 m. What must be
    6·2 answers
  • What is the pathway of sound through fluids starting at the oval window through to dissipation of the sound waves at the round w
    7·1 answer
  • What is the wavelength of an earthquake wave if it has a speed of 11 km/s and a frequency of 7 Hz?
    11·1 answer
  • Why VR of second class lever is greater than 1?<br><br><br><br><br>​
    7·2 answers
  • A bomb, originally sitting at rest, explodes and during the
    8·1 answer
  • The newton is defined as the:
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!