Answer:
3.57 m/s
Explanation:
The sum of the 2 momentums Is equal the finale momentums. so if momentums Is q, v Is velocity and m Is Mass, q3=m1*v1+m2**v2=16+9=25 m*kg/s
q3=m3*v3
v3=q3/m3=25/(4+3)=3.57m/s
Answer:
the displacement of the object is 5 units
Explanation:
The computation of the displacement of the object is shown below:
= Move to the right + move to the right - move to the left
= 6 units + 3 units - 4 units
= 9 units - 4 units
= 5 units
Hence, the displacement of the object is 5 units
Linear momentum has to be conserved. It was zero before the thread eas burned ... when nothing was moving ... so the momentum of the masses moving in opposite directions has to add up to zero. ... Momentum = mass times speed. ... In one direction, you have 5 kg times 1/5 m/s= 1 kg-m/s. ... We need 1 kg-m/s in the other direction. ... 7 kg times speed = 1 kg-m/s. ... Can you finish it from here ?
Answer: 3.75 joules
Explanation:
Given that:
Mass of acorn = 0.300 kilograms
velocity = 5.oo m/s
Kinetic energy = ?
Since, kinetic energy is the energy possessed by a moving object, its value depends on the mass M and velocity V of the acorn.
Thus, Kinetic energy = 1/2 x mv^2
= 1/2 x 0.300kg x (5.00m/s)^2
= 0.5 x 0.3kg x (5.00m/s)^2
= 0.15 x (5.00m/s)^2
= 3.75 joules
Thus, the kinetic energy of the falling acorn is 3.75 joules
A camera flash or lighting bolt because stored separated positive and negative charges --> caused them to do work by briefly lighting a bulb as the separated charges moved back together