Answer:
b) q large and m small
Explanation:
q is large and m is small
We'll express it as :
q > m
As we know the formula:
F = Eq
And we also know that :
F = Bqv
F = 
Bqv = 
or Eq = 
Assume that you want a velocity selector that will allow particles of velocity v⃗ to pass straight through without deflection while also providing the best possible velocity resolution. You set the electric and magnetic fields to select the velocity v⃗ . To obtain the best possible velocity resolution (the narrowest distribution of velocities of the transmitted particles) you would want to use particles with q large and m small.
Answer: Option (D) is the correct answer.
Explanation:
The given elements Li, C and F are all second period elements. So, when we move from left to right across a period then there occurs increase in number of valence electrons as there occurs increase in total number of electrons.
So, it means more electrons are added to the same energy level.
Thus, we can conclude that a property of valence electrons for each element is located in the same energy level is common in the given elements.
Answer:
1. Force = mass x acceleration - Newton
2. A planet moves faster in the part of its orbit nearer the Sun and slower when farther from the Sun, sweeping out equal areas in equal times - Kepler
3. For any force, there is an equal and opposite reaction force - Newton
.
4. An object moves at constant velocity if there is no net force acting upon it - Newton
5. The orbit of each planet about the Sun is an ellipse with the Sun at one focus - Kepler.
6. More distant planets orbit the Sun at slower average speeds, obeying the precise mathematical relationship p2-a3 - Kepler.
Explanation:
The three laws of planetary motion formulated by Johannes Kepler or Kepler's laws of planetary motion:
- The first law states that the planets move around the Sun in an elliptical orbit with the Sun at one of the foci.
- The second law states that the line segment joining a planet to the Sun sweeps out equal areas in equal time.
- The third law states that the square of the orbital period (p) of a planet is directly proportional to the cube of the mean distance (a) from the Sun (or semi-major axis of its orbit) i.e., p² is proportional to a³.
The three laws of motion formulated by Sir Isaac Newton or Newton's laws of motion:
- The first law, also known as the law of inertia states that an object at rest or moves at a constant velocity will remain at rest or keep moving at a constant velocity unless it is acted upon by a force.
- The second law states that the total force (F) applied on an object is directly related to the acceleration (a) of that object produced by the applied force and the mass (m) of the object, i.e., F = ma (assuming the mass m is constant).
- The third law, also known as the law of action and reaction states that when an object exerts a force on another object, then the latter exerts a force equal in magnitude and opposite in direction on the former object i.e., for every action, there is an equal and opposite reaction. The example includes the recoiling of a gun when it fires a bullet forward.
1) <span>The function of the electron transport chain is to pump protons in the mitochondrion inter-membrane, thus building up a proton gradient. This gradient will allow the ATP syntheses</span><span>.</span>
2) Why we need oxygen for the electron transport chain:
At the end of the electron transport chain is the Oxygen that will accept
electrons and picks up protons to form water. If the oxygen molecule is not there the electron transport chain
will stop running, and ATP will no longer be produced. Basically, we need the oxygen to produce more ATP.