TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.
To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:
e = -N•dI/dt; dI = ABcos(theta)
where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.
Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
Hope this helps!
Answer:
Different star constellations are visible from Earth at different seasons of the year.
Explanation:
The reason the fact that we can see different constellations in the sky during different seasons on earth is the most compelling reason we travel around the sun is because if the sun travelled around the earth, certain constellations would only be visible in certain places. You’d have to travel to see certain ones.
However, you don’t have to do that because we travel around the sun, therefore travelling around other stars too.
The average power output is the ratio between the work done to compress the spring, W, and the time taken, t:

(1)
The work done is equal to the elastic energy stored by the compressed spring:

where

is the spring constant and

is the compression of the spring. If we substitute the numbers, we find:

And now we can use eq.(1) to calculate the average power output:
Density
is a value for mass, such as kg, divided by a value for volume, such as m3.
Density is a physical property of a substance that represents the mass of that
substance per unit volume. It is a property that can be used to describe a
substance.<span> </span><span>It has standard units of
kg/m^3 or g/mL.
So, the best answer is option C.</span>