Answer:
What that means is that when pressure and number of moles are kept constant, increasing the temperature will result in an increase in volume. Likewise, a decrease in temperature will result in a decrease in volume. In your case, the volume of the gas decreased by a factor of about 3, from "140.0 mL" to "50.0 mL".
Omg i lost everything ugh
To do it again
1. 12g+2(16g)= 44g/mol
25.01/ 44g/mol= .... mol
2. 14g+3(1g)= 17g/mol
34.05g/ 17g/mol=.... mol
3. 23g+1g+ 12g+ 3(16g)= 84g/mol
17.31g/ 84g/mol=.... mol
4. 6(12g)+12(1g)+6(16g)= 180g/mol
123.44g/ 180g/mol=.... mol
5. 23g+16g+1g= 40g/mol
2.2mol x 40g/mol= .... g
6. 2(35g)= 71g/mol
4.5mol x 71g/mol= .... g
7. 137g+ 2(14g)+ 6(16g)= 261g/mol
0.002mol x 261g/mol= ....g
8. 2(56g)+ 3(32g)+ 12(16g)= 400g/mol
5.4mol x 400g/mol=.... g
I cant believe i had to do this all over
The third is one: controlled burn
Let's start with the amount given in percent. Let our basis be 100 grams of compound. So, that means that in this amount, 57.1 g is oxygen and 100-57.1=42.9 g is carbon. Since there is 1:1 atom ratio, it also means that moles oxygen = moles carbon.
Moles = Mass/Relative Mass
Let x be the relative mass of oxygen
57.1/16 = 42.9/x
Solving for x,
<em>x = 12.02 amu</em>
The correct answer is (D)
All the above are reasons the carbon , oxygen, and nitrogen cycles are vital to life on earth.
The explanation:
because :
1) Carbon, oxygen, and nitrogen are vital components of life on Earth.
2) The carbon, oxygen, and nitrogen cycles allow vital elements to return to usable form by organisms.
3)The carbon, oxygen, and nitrogen cycles are an important interface between biotic and abiotic factors
4) They are all biogeochemical cycles.
5) They all involve an interaction between living and nonliving elements.
6)They are all part of the Earth system.